Agilent Technologies

E8480A High Power
General Purpose Switch Module

User’s Manual

Agilent Technologies

Manual Part Number: E8480-90001
Printed in U.S.A. E0301

Contents
Agilent E8480A User’s Manual

AGILENT TECHNOLOGIES WARRANTY STATEMENTccooooiviiireverieeiee 7
SAfELY SYMBOISeiciicie e ettt et naenn et 8
WARNINGS. ...ttt ettt a b b nns 8
Declaration of CONfOrMILYc.cccieiieiiiiiie et e e sraere e 9
Chapter 1
(1= AT o S T 1= o [T 11
ADOUL ThiS Chapter.......c.eeiieiice et sreene s 11
Agilent EB480A Module DESCIIPLION.......cccviiiieeie ettt re e 11
2 F= S To @] o= = (] 11
Y/ o Lo M@0 a1 To [V = o o S 12
INSErUMENt DEfINITION.c..iieeeeee e e 13
Programming the MOTUIE...........cceiiiee e 13
Specifying SCPl COMMANGSccccciiieieieieesie s e e nne s 13
Channel AGUIESSESc.oiuiiiirieresiee et er e 13
T TR U= IO = 4 o o S 15
Example: Closing aChannel (HTBESIC)cccevceevieeiiesen et 15
Example: Closing aChannel (C/CH+) ..ot 15
Chapter 2
Configuring thE MOTUIEooeeeee e s s 17
F N oo LU B I EY O 47 o = 17
Warnings and CaULiONS..........cueiiiiieriiereiee e sreeseeseeseseeesesseesressnsesessrassneesanesnsessnns 17
Setting the Logical AQUIESS........cccccv ittt 18
Setting the INterrupt Priorityccececeeceese e 19
Connecting Field Wiring to the ModUle.........c..ooveieieiicecececeee e 20
Front Panel & ConNECLOrS PINOULc.cooiiieieneiiere e 20
ACCESSOIES FOr WITING wenteeiieee ettt 21
Attaching Connectorsto the Module ..., 22
Protecting Relays and CirCUILS.........covieieie et e 23
PN (o] gTe AT 1 (o =P 23
EMErgenCy RESEL ..ot 24
Maximum Allowable Module Switch CUurrentcccooeeeerirnenieenn e 25
Chapter 3
USINGTNEMOUUIE ...ttt st s ere e e renne s 27
ADOUL ThiS Chapter.........eeiieciece et ene s 27
Module Commands SUMIMEALYcceeeeierieieeeesesesieese e e eesae e sessee e sseseeseesreenes 28
Power-On and Reset CONAitiONS..........cooceiriireee e 28
Module 1dentifiCaLIONcooeeeeeeee e et see e 29
Example: Identifying Module (HTBESIC) ...ccccccvevieevieesiee e 29
Example: Identifying Module (CICH+) ... 29

SWILChING ChaNNELSoceeeeci et st re e aeere e 31

Example: Closing Multiple Channels (HTB&SIC)cccccevvveeievenieeie e, 32
Example: Closing Multiple Channels (C/CH+) .uviiiiiieiiereecee e 32
SCanNNiNG ChanNNEIS.........coiiiiir e re e e enreeneeeas 33
Example: Scanning Channels Using Trig IN/Out POrtscccccoeveevevccencciecnene, 33
Example: Scanning Channels Using TTL Triggerccocevvveeceveveee e, 38
Using the Scan Complete Bit.........cccvvveieiiiiciece et 43
Recalling and SaVving SEaLES........ccccciiiererie ettt 46
Example: Saving and Recalling Instrument State (HTBasIC)cccecevvcevvieennenne. 46
QUENYING thE MOUUIE.......eeeciee e s e e s e s re e re e sne e e 47
Detecting Error CONitioNS........cceieeiieniieiie e s see s see e sre e s s e e snes s sns 47
Example: Querying Errors (HTBESIC) ..cvvcvveeeevieiiiiiesie e 47
Synchronizing the INSLIUMENESeivieee e 48
Example: Synchronizing the Instruments (HTB&SIC)ccocvveevvvieciece e, 48
Chapter 4

ComMmMANd REFEINENCE ..o eeas 49
ADOUL ThiS Chapter.......c.eeiiiecee et sne s 49
(@041 00F= 0o [I8/ - SRS 49
Common Command FOMMELccoeririririnirenie e 49
SCPI ComMmMand FOrMALcceeoeieieeere et 49
Linking COMMAENGSc.ccveiieiieciecee ettt st et e e e e 51
SCPI ComMMand REFEIENCEeeieeeeeeee et 51
ABORLE ...ttt bbbttt e ettt nbene s 52
ARM L b bbb ettt b ettt b et 53
ARMICOUNTL ..ottt sttt st sbenbene s 53
ARMICOUNIL? .ottt s e e s sesse st e e eneesestessenannens 54

[N € oL oSS 55
DIAGNOStiC:EMERQGENCY:CLEQANoccieecieciece et s 55
DIAGNOStiC:EMERQGENCY:STATUS? ..ottt 56
DIAGhostic:.EMERQENCY: TRIGQENSTATE ..o 56
DIAGhostic.EMERQENCY: TRIGQENSTATE? ..oeeececeee e 57
DIAGNOStICINTETUPLLILINE] et 57
DIAGROStICINTETUPLLILINE]? et 58
DIAGROStICINTETUPETIMEL . s s e 58
DIAGNOSCINTETUPETIME? ot 59
DIAGNOSC:SCANDELAY ..c.oovieieeeeee ettt 59
DIAGNOSC:SCANDELAY? ...ttt 59
DIAGNOStIC: TEST[:RELAYS]? ..eecveieeiieeiesie et e st ee e saeete et e e e saee s 60
DIAGNOSC:TEST:SEEPIOM? ..ot 60

DS = YRS 61
DISPIay:MONItOrCARDccvececeee ettt s 61
DISPIay:MONITOrCARD? ..ottt 61
DISPIay:MONITOI[:STATE] ..oeeeeceiee et ree et sae ettt sn e e 62

DISPIay:MONITOI[:STATE]? wooeecece et ee et as et et sn e e e 62

INITIEEEICONTINUOUScuvenieeeiiiereeiceiesie sttt s st enne s 63
INITIGLE CONTINUOUS?eeeieeeeeiesee e steetee e sie et eeseeste e eneeseesnesneeneeseenees 64
INITIGE:IMMEUIALE] ... 64

[10 I | RS 65
OUTPULECLTIGN[:STATE] ovveeeciiee ettt sttt 65
OUTPULECLTIGN[:STATE]? oottt sttt st 66
OUTPUL:EXTENA][:STATE] oottt 66
OUTPUL:EXTENA][:STATE]? oot eese s ee e, 67
OUTPULTTLTIGN:STATE] oot ste et s et sre e s 67
OUTPULTTLTIGN:STATE]? ettt ete ettt e et sre et 68
RO I =] OSSR 69
[ROUTECLOSEooviieieriiriiriesieieie sttt ettt st s ns e e s 69
[ROUTECLOSE? ...ttt sttt sttt sae e 70
[ROUTEJOPEN ..ottt ee s ees e s s sn e s en s eeneenneans 70
[ROUTEJOPEN? ...ttt eeeeees s ees e sn e en s neenenennans 71
[ROUTE]ISCAN .ot ees et ees s ee s en s eeseanneans 71

ST ATUS. ettt r e e h e b s h e e R r e nre e r e nne e 73
STATUS:OPERation:CONDItION?c.oouiiiiriiiiiieriiriese e s 75
STATUS:OPER&ELION:ENABIE ...t s 75
STATUS.OPERELION:ENABIE? ...t 75
STATUS:OPERGHON[:EVENL]? ... 76
STATUSIPRESEL ..ottt ettt e s s ne e e nnee e 76

) S 1= 1 1 PSSP 77
SY STEM:CDESCHPLIONT ..ottt sttt nne s 77
SYSTEMICPON ..ottt bbbt e 78

) S 1= 10 O I == 7 78
SYSTEMIERROI? ..ottt 79
SYSTEMIVERSIONT? ...ttt nne s 79
LI = USSR 80
TRIGE:IMMEIALE]ooveiviiiee e e 80
TRIGGENSOURCEeeiiiieiieeiies ettt ettt st reesnreas 8l
TRIGGENSOURCE? ...ttt ee st aee e s e e et e st e e san e e sneeennee s 82
SCPI Command QUICK REFEFENCEcceeieeeeie e e 83
|EEE 488.2 Common Command REfEreNCe.........ccovv e 84

Appendix A
EB480A SPECITICALIONSvecveeeeiicieeeecte st et sresre e rene s 85
Appendix B

Register-Based ProgrammMingcccceceeieriiriieesies e e seeses e sressssessessnesesssessnsesnnes 87
ADOUL ThiS APPENIX.......eoiiiiieieiecicie ettt st a e re s 87
REGISLEr AQUIESSING......eeiviiiiiiecie ittt s re e st e s te b e e besresreennesre e 87
BASE AGUIESS ...ttt ettt n et ae et e 87

RS oIS (= O = 20

RS [(= (Y D I= o 1 () o R 91

T o = 92

DeViCe TYPE REGISIES ..ottt et ettt et e e e re e re e 92

StatuS/CONtrol REQISLENeeieeiieecie e see et e e e sne e e reeneeens 92

Interrupt SElECtioN REGISLENcccviiie et 93

Relay Control REQISLENScc.oiiiieiiieceese ettt 94

Timer Control REJISLEISocviveee et sne e 95

Emergency Control REJISLENcccoveiiiiiieie e 96
Appendix C

ErTOr IMESSA0ESveeeiieiiiee et tee st e stte et e st e s te e et e et e e st e e enteesraeesnteesnteeenneesnseeenseaans 97
Appendix D

TS =V I = RSP PRS 99

S = Y = TS 99

=010 Ko MY = B < = o (o o USSR 99

AGILENT TECHNOLOGIES WARRANTY STATEMENT
AGILENT PRODUCT: EB8480A High Power General Purpose Switch Module DURATION OF WARRANTY: 3years

1. Agilent Technologies warrants Agilent hardware, accessories and supplies against defectsin material s and workmanship for the period
specified above. If Agilent receives notice of such defects during the warranty period, Agilent will, at its option, either repair or replace
products which prove to be defective. Replacement products may be either new or like-new.

2. Agilent warrants that Agilent software will not fail to execute its programming instructions, for the period specified above, due to
defectsin material and workmanship when properly installed and used. If Agilent receives notice of such defects during the warranty
period, Agilent will replace software media which does not execute its programming instructions due to such defects.

3. Agilent does not warrant that the operation of Agilent productswill beinterrupted or error free. If Agilent isunable, within areasonable
time, to repair or replace any product to a condition as warranted, customer will be entitled to arefund of the purchase price upon prompt
return of the product.

4. Agilent products may contain remanufactured parts equivalent to new in performance or may have been subject to incidental use.

5. The warranty period begins on the date of delivery or onthe date of installation if installed by Agilent. If customer schedulesor delays
Agilent installation more than 30 days after delivery, warranty begins on the 31st day from delivery.

6. Warranty does not apply to defects resulting from (&) improper or inadequate maintenance or calibration, (b) software, interfacing, parts
or supplies not supplied by Agilent, (c) unauthorized modification or misuse, (d) operation outside of the published environmental
specifications for the product, or (€) improper site preparation or maintenance.

7. TOTHE EXTENT ALLOWED BY LOCAL LAW, THE ABOVE WARRANTIES ARE EXCLUSIVE AND NO OTHER
WARRANTY OR CONDITION, WHETHER WRITTEN OR ORAL, ISEXPRESSED OR IMPLIED AND AGILENT
SPECIFICALLY DISCLAIMSANY IMPLIED WARRANTY OR CONDITIONS OF MERCHANTABILITY, SATISFACTORY
QUALITY, AND FITNESS FOR A PARTICULAR PURPOSE.

8. Agilent will beliable for damageto tangible property per incident up to the greater of $300,000 or the actual amount paid for the product
that isthe subject of the claim, and for damages for bodily injury or death, to the extent that all such damages are determined by a court
of competent jurisdiction to have been directly caused by a defective Agilent product.

9. TO THE EXTENT ALLOWED BY LOCAL LAW, THE REMEDIESIN THISWARRANTY STATEMENT ARE CUSTOMER'S
SOLE AND EXLUSIVE REMEDIES. EXCEPT ASINDICATED ABOVE, IN NOEVENT WILL AGILENT ORITS SUPPLIERSBE
LIABLE FOR LOSS OF DATA OR FOR DIRECT, SPECIAL, INCIDENTAL, CONSEQUENTIAL (INCLUDING LOST PROFIT OR
DATA), OR OTHER DAMAGE, WHETHER BASED IN CONTRACT, TORT, OR OTHERWISE.

FOR CONSUMER TRANSACTIONSIN AUSTRALIA AND NEW ZEALAND: THEWARRANTY TERMSCONTAINED IN THIS
STATEMENT, EXCEPT TO THE EXTENT LAWFULLY PERMITTED, DO NOT EXCLUDE, RESTRICT OR MODIFY AND ARE
IN ADDITION TO THE MANDATORY STATUTORY RIGHTS APPLICABLE TO THE SALE OF THIS PRODUCT TO YOU.

U.S. Government Restricted Rights

The Software and Documentation have been developed entirely at private expense. They are delivered and licensed as"commercial
computer software” as defined in DFARS 252.227- 7013 (Oct 1988), DFARS 252.211-7015 (May 1991) or DFARS 252.227-7014 (Jun
1995), asa"commercial item" asdefined in FAR 2.101(a), or as "Restricted computer software” as defined in FAR 52.227-19 (Jun
1987)(or any equivalent agency regulation or contract clause), whichever is applicable. Y ou have only those rights provided for such
Software and Documentation by the applicable FAR or DFARS clause or the Agilent standard software agreement for the product
involved.

Agilent Technologies

E8480A High Power General Purpose Switch Module User’s Manual
Edition 1
Copyright © 2001 Agilent Technologies, Inc. All rights reserved.

Documentation History

All Editions and Updates of this manual and their creation date are listed below. The first Edition of the manual is Edition 1. The Edition
number increments by 1 whenever the manual isrevised. Updates, which are issued between Editions, contain replacement pages to
correct or add additional information to the current Edition of the manual. Whenever anew Edition is created, it will contain all of the
Update information for the previous Edition. Each new Edition or Update also includes arevised copy of this documentation history page.

Edition 1 ... March, 2001

Safety Symbols
Instruction manual symbol affixed to

product. Indicates that the user must refer to /\/ Alternating current (AC)
the manual for specific WARNING or
CAUTION information to avoid personal —_— .
injury or damage to the product. - — - Direct current (DC).
& Warning. Risk of electrical shock.
Indicates the field wiring terminal that must

be connected to earth ground before

operating the equipment — protects against WARNING Calls attention to a procedure, practice, or

electrical shock in case of fault. condition that could cause bodily injury or
death.

Calls attention to a procedure, practice, or

I Frameor chassisground terminal—typically CAUTION i ;
/—Jﬁ or connects to the equipment's metal frame. ggﬂﬂ;ﬂ%%%?t gg?rwaﬁoei? |b cl))s/scc?? 3%?;111 ageto

WARNINGS

The following general safety precautions must be observed during all phases of operation, service, and repair of this product. Failure to
comply with these precautions or with specific warnings el sewhere in this manual violates safety standards of design, manufacture, and
intended use of the product. Agilent Technologies assumes no liability for the customer's failure to comply with these requirements.

Ground the equipment: For Safety Class 1 equipment (equipment having a protective earth terminal), an uninterruptible safety earth
ground must be provided from the mains power source to the product input wiring terminals or supplied power cable.

DO NOT operatethe product in an explosive atmaosphere or in the presence of flammable gases or fumes.

For continued protection against fire, replace the line fuse(s) only with fuse(s) of the same voltage and current rating and type. DO NOT
use repaired fuses or short-circuited fuse holders.

Keep away from live circuits: Operating personnel must not remove equipment covers or shields. Procedures involving the removal of
covers or shields are for use by service-trained personnel only. Under certain conditions, dangerous voltages may exist even with the
equipment switched off. To avoid dangerous el ectrical shock, DO NOT perform proceduresinvolving cover or shield removal unlessyou
are qualified to do so.

DO NOT operate damaged equipment: Whenever it is possible that the safety protection features built into this product have been
impaired, either through physical damage, excessive moisture, or any other reason, REMOVE POWER and do not use the product until
safe operation can be verified by service-trained personnel. If necessary, return the product to Agilent for service and repair to ensure that
safety features are maintained.

DO NOT serviceor adjust alone: Do not attempt internal service or adjustment unless another person, capable of rendering first aid and
resuscitation, is present.

DO NOT substitute partsor modify equipment: Because of the danger of introducing additional hazards, do not install substitute parts
or perform any unauthorized modification to the product. Return the product to Agilent for service and repair to ensure that safety features
are maintained.

. Agilent Technologies DECLARATION OF CONFORMITY

According to ISO/IEC Guide 22 and CEN/CENELEC EN 45014

Manufacturer’s Name: Agilent Technologies, Inc.
Manufacturer’'s Address: Basic, Emerging and Systems Technologies Product Generation Unit

815 14™ Street S.W.
Loveland, CO 80537 USA

Declares, that the product

Product Name: High Power General Purpose Switch Module
Model Number: E8480A
Product Options: This declaration includes all options of the above product(s).

Conforms with the following European Directives:

The product herewith complies with the requirements of the Low Voltage Directive 73/23/EEC and the EMC Directive 89/336/EEC
and carries the CE Marking accordingly.

Conforms with the following product standards:

EMC Standard Limit
IEC 61326-1:1997 + A1:1998 / EN 61326-1:1997 + A1:1998
CISPR 11:1997 + A1:1997 / EN 55011-1991 Group 1, Class A 1
IEC 61000-4-2:1995+A1998 / EN 61000-4-2:1995 4 kV CD, 8 kV AD
IEC 61000-4-3:1995 / EN 61000-4-3:1995 3 V/m, 80-1000 MHz
IEC 61000-4-4:1995 / EN 61000-4-4:1995 0.5 kV signal lines, 1 kV power lines
IEC 61000-4-5:1995 / EN 61000-4-5:1995 0.5 kV line-line, 1 kV line-ground
IEC 61000-4-6:1996 / EN 61000-4-6:1996 3V, 0.15-80 MHz
IEC 61000-4-11:1994 / EN 61000-4-11:1994 1 cycle, 100%

Canada: ICES-001:1998
Australia/New Zealand: AS/NZS 2064.1

Safety IEC 61010-1:1990+A1:1992+A2:1995 / EN 61010-1:1993+A2:1995
Canada: CSA C22.2 No. 1010.1:1992
UL 3111-1

Supplemental Information:

[1] The product was tested in a typical configuration with Agilent Technologies test systems.

ol

September 5, 2000

Date Name

Quality Manager

Title

For further information, please contact your local Agilent Technologies sales office, agent or distributor.
Authorized EU-representative: Agilent Technologies Deutschland GmbH, Herrenberger Straf3e 130, D 71034 Boblingen, Germany

Revision: A.03 Issue Date: 09/05/00

Notes:

10

Chapter 1
Getting Started

About This Chapter

Thischapter describesthe Agilent EB480A 40-Channel High Power Genera
Purpose (GP) Switch module, contains information on how to program it
using SCPI (Standard Commands for Programmable Instruments)
commands, and provides an example program to check initial operation.
Chapter contents include:

® Agilent EB480A Module Description. 11
® Instrument Definition 13
® ProgrammingtheModule. 13
® |nitial Operationt 15

Agilent E8480A Module Description

Basic Operation

The Agilent E8480A 40-Channel High Power General Purpose Switch
Moduleisasingle-slot VXIbus C-Size register-based product which can
operatein aC-Size VXIbus mainframe. It isideal for switching and routing
high-current sources such as AC and DC power supplies in the automated
test systems.

For the General Purpose Switch module, switching consists of opening or
closing a channel relay to provide alternate connections to user devices.
Scanning consists of closing a set of channd relays, one at atime.

Asshown in Figure 1-1, the EB480A module consists of 40 channels
(channels 00 through 39). Each channel uses a non-latching Form A relay.
Signals are switched by opening or closing the appropriate channel relays.
At power-on, power-off, or reset, all channels of the module are open. User
inputs and outputs to each channel are made viathe connectors (J1, J2, and
J3) on the modul€’ s front panel. See “Connecting Field Wiring to the
Module” on page 20 for more information.

In addition, to get the full life of the relays, varistors can be mounted onto
the module s PC board for relay protection. The"Emergency Reset" port on
the modul €' s front panel provides an easy way to allow user to take
immediate action for relay protection in case of an emergency. See
“Protecting Relays and Circuits’ on page 23 of this manual for more
information.

Chapter 1

Getting Started 11

=
oA
g
@ﬂfﬁ:ﬁ“ Emergency Reset
Port
1 oo
af|22s ‘ |
0coo E8480A Switch Mddule @ To Connectors (J1-3) .
oo o L ;
° 2L :
[H CH39 o h CHB9 i
ok oL i
[H CH38 o h C8
J2 E :
O 0 © L ‘ l
20 6 o o o i oL :
[H CH20 o f C20 i
o 0 O 1
ZZZ Q/DL Q L '
[H CH19 o h OHLo
° °
° °
° °
o0 o0 GL oL
I3 Do | H_CHo 2L oo
[oL oL
000 [H CHOO o 1 CHOO

/

Figure 1-1. Front Panel and Simplified Schematic of the E8480A

Typ ical Eachrelay channel onthe EB480A module can accept amaximum current of
; ; 12A. The maximum voltage per channel is 150 Vdc or 280 Vac. The
Confi guration maximum rated power capacity (external load) is 3360 VA or 360 Wdc per
channel.

For a Standard Commands for Programmabl e Instruments (SCPI)
environment, one or more E8480A modules can be configured as a
switchbox instrument. All modules within the switchbox can be addressed
using a single interface address.

12 Getting Started Chapter 1

Instrument Definition

The plug-in modules installed in an Agilent mainframe or used with an
Agilent command module are treated as independent instruments each
having a unique secondary GPIB address. Each instrument is also assigned
adedicated error queue, input and output buffers, status registers and, if
applicable, dedicated mainframe/command module memory space for
readings or data. An instrument may be composed of asingle plug-in
modul e (such as a counter) or multiple plug-in modules (for a switchbox or
scanning multimeter instrument).

Programming the Module

NOTE

Specifying SCPI

Commands

Channel Addresses

NOTE

To program the module using SCPI commands, you must select the
controller language, interface address, and SCPI commands to be used. See
the C-Sze VXIbus System Configuration Guide for detailed interface
addressing and controller language information. For usesin other systems
or mainframes, see the appropriate manuals. For more details of SCPI
commands applicable to the module, refer to Chapter 4 of this manual.

The module can also be programmed by directly writing toitsregisters. See
Appendix B for the details on register programming.

To address specific channels within an E8480A module, you must specify
the appropriate SCPlI command and channel addresses. Table 1-1 lists the
most commonly used commands. Refer to Chapter 4 of this manual for a
complete list of SCPI commands applicable to the module.

Table 1-1. Commonly Used SCPI Commands

SCPI Commands Commands Description
CLOSe <channel_list> Close (connect) the specified channels.
OPEN <channel_list> Open (disconnect) the specified channels.
SCAN <channel_list> Closes a serials of channels, one at a time.

Only valid channel addresses can be included in the channel_list. For the
E8480A, the channel address has the form of (@ccnn) where,

cc = card number (01-99)
nn = channel number (00-39)

Only valid channels can be accessed in a channel list or channel range.
Also, the channel range must be from a lower channel number to a higher
channgl number. Otherwise, an error will be generated.

Chapter 1

Getting Started 13

To specify achannel_list, use the form of:

® (@ccnn) for asingle channel

® (@ccnn,ccnn) for multiple channels

® (@ccnn:ccnn) for sequential channels

® (@ccnn:ccnn,cecnn:cenn) for groups of sequential channels
® or any combination of the above.

Channel Number The channel number (nn of the channel_list) identifies which relay on the

selected module will be addressed. The channel numbers of the ES480A
modul e are 00 through 39.

Card Number The card number (cc of the channel_list) identifies which module within a

switchbox will be addressed. The card number assigned depends on the
switchbox configuration used. L eading zeroes can be ignored for the card
number.

® Single-module Switchbox. In a single-module switchbox
configuration, the card number is always O1.

® Multiple-module Switchbox. In a multiple-module switchbox
configuration, modules are set to successive logical addresses. The
module with the lowest logical addressis always card number 01. The
modul e with the next successive logical addressis card number 02,
and so on. Figure 1-2 illustrates the card numbers and logical
addresses of atypica multiple-module switchbox installed in an
Agilent C-Size mainframe with an Agilent command module.

Mul ti pl e- Modul e Swi t chbox Card Nunbers
&
»1 [T T Card Number 01
OLZVLO Hi gh- Power GP Modul e
}88 Tes / el o E | Logical Address = 120
2 2 < se<S=_ Secondary Address = 15
Comand a2 —Mmoa
Modul e {0
G IR AN 2K Card Nunber 02
Ol O Ol (O]
!Illl Hi gh- Power GP Modul e
) Logi cal Address = 121
TNYOONIR
0
° 0L ZS VS 9 Z Card Nunber 03
]| [Of 0
= = E Hi gh- Power GP Modul e
'S ' Logical Address = 122
2 T ANFT0ONT O
o (J —med
\ / .))
Not e: Physical placenent of the nodule in the |ogical address
order is not required, but is recomrended.
Figure 1-2. Multiple-Module Switchbox Instrument
14 Getting Started Chapter 1

Initial Operation

Example: Closing a
Channel (HTBasic)

Example: Closing a
Channel (C/C++)

Use the following example programs to perform the initial operation on the
E8480A module. To run the programs, an Agilent E1406A command
moduleisrequired. Also, you must download the E8480A SCPI driver into
the E1406A command moduleand havethe Agilent SICL Library, theVISA
extensions, and an Agilent 82350 GPIB card installed and properly
configured in your PC.

In the examples, the computer interfaces to the mainframe via GPIB. The
GPIB interface select codeis 7, the GPIB primary address is 09, and the
E8480A moduleisat logical address 120 (secondary address = 120/8 = 15).
Refer to the Agilent E1406A Command Module User’s Guide for more
addressing information. For more details on the related SCPI commands
used in the examples, see Chapter 4 of this manual.

Thisexample program waswritten in HTBasic programming language. The
program closes channel 102 of the module, then queriesthe channel closure
state. The result is returned to the computer and displayed on the screen

(1 = channel closed, 0 = channel open).

10 DIM Ch_Stat$[20] ! Dimension a variable.

20 OUTPUT 70915; ™RST" I Resets the module.

30 OUTPUT 70915; "CLOS (@102)" I Close channel 102.

40 OUTPUT 70915; "CLOS? (@102)" ! Query channel 102 closed
State.

50 ENTER 70915; Ch_Stat$ | Enter resultsinto Ch_stat$.

60 PRINT Ch_Stat$ I'"1" should be displayed.

70 END

This example program was developed and tested in M icrosoft® Visual C++
6.0 but should compile under any standard ANSI C compiler. The program
closes channd 102 of themodul e, then queriesthe channel closure state. The
result is returned to the computer and displayed on the screen

(1 = channel closed, 0 = channel open).

#include <visa.h>
#include <stdio.h>
#include <stdlib.h>

/* Module logical addressis 120, secondary addressis 15 */
#define INSTR_ADDR "GPIB0::9::15::INSTR"

int main()

{
ViStatus errStatus; [* Satus from each VISA call */
ViSession ViRM; /* Resource manager session */
ViSession E8480A,; /* Module session */
char state[10]; [* Channel state */

Chapter 1

Getting Started 15

/* Open the default resource manager */
errStatus = viOpenDefaultRM (&viRM);
if(VI_SUCCESS > errStatus){
printf("ERROR: viOpenDefaultRM() returned 0x%x\n", errStatus);
return errStatus;}

[* Open the modul e instrument session */
errStatus = viOpen(viRM,INSTR_ADDR, VI_NULL,VI_NULL,&E8480A);
if(VI_SUCCESS > errStatus){
printf("ERROR: viOpen() returned 0x%x\n", errStatus);
return errStatus;}

/* Reset the module */
errStatus = viPrintf(E8480A, "*RST;*CLS\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Close channel 102 */
errStatus = viPrintf(E8480A, "CLOS (@102)\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

[* Query state of channel 102 */
errStatus = viQueryf(E8480A, "ROUT:CLOS? (@102)\n", "%t", state);
if (VI_SUCCESS > errStatus) {
printf("ERROR: viQueryf() returned 0x%x\n", errStatus);
return errStatus;}
printf("Channel State is: %s\n", state);

* Close the module instrument session */
errStatus = viClose (E8480A);
if (VI_SUCCESS > errStatus) {
printf("ERROR: viClose() returned 0x%x\n", errStatus);
return 0;}

/* Close the resource manager session */
errStatus = viClose (ViRM);
if (VI_SUCCESS > errStatus) {
printf("ERROR: viClose() returned 0x%x\n", errStatus);
return 0;}

return VI_SUCCESS;

16 Getting Started Chapter 1

Chapter 2
Configuring the Module

About This Chapter

This chapter shows how to configure the EB480A module for usein a
V XIbus mainframe, install it in amainframe, as well as how to connect
external wiring to the module. Chapter contents include:

® WarningsandCautions., 17
® Settingthe AddressSwitch. 18
® Setting the Interrupt Priority 19
® Connecting Field WiringtotheModule. 20
® protecting Relaysand Circuits 23

Warnings and Cautions

WARNING

Caution

Caution

SHOCK HAZARD. Only qualified, service-trained personnel who
are aware of the hazards involved should install, configure, or
remove the High-Power Switch module. Use only wire rated for
the highest input voltage and disconnect all power sources
from the mainframe and installed modules before installing or
removing a module.

MAXIMUM VOLTAGE/CURRENT. The maximum allowable
voltage per channel for the Switch module is 150 Vdc or

280 Vac rms. The maximum current per channel is 12 Adc or ac
(non-inductive). The maximum rated power capacity (external
load) is 360 Wdc or 3360 VA per channel. Exceeding any limit
may damage the High-Power Switch module.

STATIC ELECTRICITY. Static electricity is a major cause of
component failure. To prevent damage to the electrical
components in the High-Power Switch module, observe
anti-static techniques whenever removing a module from the
mainframe or whenever working on a module. DO NOT install
the Switch module without its metal shield attached.

Chapter 2

Configuring the Module 17

Setting the Logical Address

NOTE

Thelogical address switch (LADDR) factory setting is 120. Valid address
values are from 1 to 255. Figure 2-1 shows the address switch position and

setting information.

The address switch selected value must be a multiple of 8 if the moduleis
the first module in a switchbox used with a VXlbus command module, and
being instructed by SCPI commands.

e N\
. N °
8416432+ 64=120" ° /E °
K_H C Logical Address
| | | | | Switch
YYVVY :
ol B B | D D D D |
Ul mmmm
01234567 ° o
— AN <t O 0O N T © K
" Logical Address = 120 .
______ ° o
ul_‘—l ° rL_‘u
AN N
_ /

Figure 2-1. Setting the Logical Address Switch

18 Configuring the Module

Chapter 2

Setting the Interrupt Priority

NOTE

The E8480A module generates an interrupt after a channel has been closed.
These interrupts are sent to, and acknowledgments are received from, the
command module (Agilent E1406A) viathe V XIbus backplane interrupt
lines.

For most applications, the default interrupt priority line should not have to
be changed. Thisis because the V X1bus interrupt lines have the same
priority and interrupt priority is established by installing modulesin slots
numerically closest to the command module. Thus, slot 1 has a higher
priority than slot 2, slot 2 has a higher priority than slot 3, etc.

By default, the interrupt priority level isLevel 1. It can be set to any one of
the V X| backplane lines 1-7 (corresponding to Levels 1-7) either by sending
SCPI or directly writing to the Interrupt Selection Register. Level 1isthe
lowest priority and Level 7 isthe highest priority. The interrupt can also be
disabled at power-up, after a SY SRESET, or by sending SCPI or directly
writing to the Status/Control Register. See page 57 of this manual for more
details of the related SCPI commands. For more information about register
writing, see “ Register-Based Programming” on page 87 of this manual.

Changing theinterrupt priority level is not recommended. DO NOT change
it unless specially instructed to do so. Refer to the E1406A Command
Module User’s Manual for more details.

Chapter 2

Configuring the Module 19

Connecting Field Wiring to the Module

Front Panel &
Connectors Pinout

User inputsto each channel are made viathe user-supplied connectorswhich
mates to the connectors (J1, J2, and J3) on the modul€' s front panel.
Additional accessories, such as cables, contacts and hand tools, are also
required for wiring. The following sections provide the detailed information
on the modul €’ s connectors pinout, the accessories required for user
connection, as well as the procedure on how to connect field wiring to the

module.

Figure 2-2 shows the front panel of the E8480A module, as well as the
connectors pinout and the corresponding channel numbers.

-

N

o®
.
sy
Emergency|
Reset
21
Ao o o‘
oo o
NIEEE
Ji "lo oo
o oo
Mo o0
oo o
o oo
30 oo o
Ao o Ow
21
Ao o ok
o oo
o o o
J2 oo o
o oo
246 0 0
o oo
30 o oo
oo o
i oy
17
1 o o ok
o o0 o
J3 o o o
nlloeo
o oo
24 oo o
oo o0
4
ho o Ol
E8480A
NEN

 Pin21»o

- Pin30 »¢

 Pin21»o

- Pin30 »¢

Pinl7 »o

Pin24 > o

CHO2_L
CHO2_H
CHO5_L
CHO5_H
CHO8_L
CHO8_H
CH11_L
CH11_H
CH14_L
CH14_H

CH17_L
CH17_H
CH20_L
CH20_H
CH23_L
CH23_H
CH26_L
CH26_H
CH29_L
CH29_H

CH32_L
CH32_H
CH35_L
CH35_H
CH38_L
CH38_H
N/A

N/A

Pinll »o

Pin20 » o
Pinll »o

Pin20 » o

Ping »o

Pin16 » o

CHO1_L
CHO1_H
CHO4_L
CHO4_H
CHO7_L
CHO7_H
CH10_L
CH10_H
CH13_L
CH13_H

CH16_L
CH16_H
CH19_L
CH19_H
CH22_L
CH22_H
CH25_L
CH25_H
CH28_L
CH28_H

CH31_L
CH31_H
CH34_L
CH34_H
CH37_L
CH37_H
N/A

N/A

Pinl »o

Pin10 » o

Pinl »o

Pin10 » o

Pinl »o

CHO0_L
CHOO_H
CHO3_L
CHO3_H
CHO6_L
CHO6_H
CHO9_L
CHO9_H
CH12_L
CH12_H

CH15_L
CH15_H
CH18_L
CH18_H
CH21_L
CH21H

CH24_L
CH24_H
CH27_L
CH27_H

CH30_L
CH30_H
CH33_L
CH33_H
CH36_L
CH36H

CH39_L
CH39_H

~

J

Figure 2-2. E8480A Module Front Panel and Connectors Pinout

20 Configuring the Module

Chapter 2

Accessories for Theaccessoriesthat are necessary to connect the field wiring are not
Wwirin g supplied with the module but can be ordered either from Agilent or from

Positronic, Inct. Thisallows you to purchase the number of connectors,
contacts and tools you require for your application. Refer to Table 2-1 to
order the accessories from Agilent. To purchase these products from
Positronic, refer to Table 2-2 for order information.

NOTE Agilent does not provide the tools (Hand Crimp Tool, Contact Insertion
Tool and Contact Extraction Tool). You should order them from Positronic,
Inc. asrequired.

Table 2-1. Accessories Ordered from Agilent

Agilent Description
Part No.

Two 30-pin female connectors, each with 30 crimp-and-insert
Option 105 contacts: Used to accept wires, then directly mating to the
module’s J1 and J2 (30-pin) male connector.

One 24-pin female connector with 24 crimp-and-insert
Option 106 contacts: Used to accept wires, then directly mating to the
module’s J3 (24-pin) male connector.

Table 2-2. Recommended Accessories Ordered from Positronic

Positronic Description
Part No.

30-pin female connector: Used to accept wires, then directly

PLC30F7000 mating to the module’s J1 or J2 (30-pin) male connector.

24-pin female connector: Used to accept wires, then directly

PLC24F7000 mating to the module’s J3 (24-pin) male connector.

Contacts: Used to accept a wire size up to 12 AWG (4.0 mm?) and
FC112N2 carry a maximum current of 25 A. Wires are crimpt onto it, then
inserted directly into the female connectors.

9501 Hand Crimp Tool - Used to crimp contacts onto wires.

Contact Insertion Tool - Used to insert the contacted wires up to

9099 5 .
12 AWG (4.0 mm~) or smaller into the connector.

Contact Extraction Tool - Used to remove the contacts from the

9081
connector.

1. Contact Positronic, Inc. 423 N. Campbell Ave. PO. Box 8247, Springfield, MO 65801, U.S.A.
Telephone: 417-866-2322, Fax: 417-866-4115, Toll Free: 800-641-4054.
Email Address: info@positronic.com. Web Site: http://www.positronic.com

Chapter 2 Configuring the Module 21

Attachin 0 Figure 2-3 shows the procedure to connect the field wiring. Use the
Connectors to the guidelines below when making the connections.

Module * Maximum wiresizeis 12 AWG. Wire ends should be stripped 5.84 mm

(0.23 inch) and tinned to prevent single strands from shorting to

adjacent terminals.

® The maximum voltage that may be applied to any connector on the
E8480A is 150 Vdc or 280 Vac. The maximum current that may be

applied to any connector is 12 Adc or Aac. The maximum rated power

capacity (external load) is 360 Wdc or 3360 VA per channel.
Exceeding any limit may damage the module.

NOTE We highly recommend to decentralize the channels when carrying high

current. That is, six channels each carrying 12 A should use channels 0, 7,

14, 21, 28 and 35 instead of using channels 0 through 5.

Stripped Wire (12 AWG) Contact

N (5
R

Step 1: Preparing Wires

With a Hand Crimp Tool - 9501 (Positronic
Part No.) or an equivalent tool, crimp a
contact onto one end of a wire.

Step 2: Inserting Wires into Connector

With a Contact Insertion Tool - 9099
(Positronic Part No.), insert the contacted
wire into the connector (Opt 105/106).

Contacted ool .
Wire & L

Opt 106
Connector

To remove the wire from the connector,
a Contact Extraction Tool-9081 (Positronic
Part No.) Is required.

e N
Step 3: Attaching Connector to the Module

Wired
Connector

E8480A Module

N %

Figure 2-3. Wiring Connections

22 Configuring the Module

Chapter 2

Protecting Relays and Circuits

Adding Varistors

NOTE

Electromechanical relays are subject to normal wear-out. Relay life depends
on severa factors, such asrelay loads, switching frequency, etc. See

Appendix D on page 99 of this manual for details. To get the full life of the
relays on the module, some protection circuits are designed on the module.

When relay contacts open or close, electrical breakdown can occur between
the contacts. This can cause high frequency radiation, voltage and current
surges, and physical damage to the relay contacts, especially when
switching inductive loads.

When shipped from the factory, the E8480A moduleisnot installed with the
varistors. However, spaces have been made on the module’s PC board for
adding varistors for relay protection as required.

To protect the relay (labeled with Kxxx on the board), simply solder a
varistor across the specified pads which are in parallel with the relay and
labeled with RVxxx (xxx is same as the protected relay label). Now as the
voltage goes up, the varistor draws current to protect the relay. Figure 2-4
shows the locations where the varistors can be added.

Make certain that the selected varistor has a voltage rating sufficient for
your application. We highly recommend to order P/N 0837-0227 for
varistors with 250 VAC and P/N 0837-0507 for varistors with 300 VAC.

For example, to protect
relay K337, soldering

IR
0%
[
N

a varistor accross
these two pads (RV337).

OO0 O0OO0OO0O0OO0O0 OO0 00000000
OOOOOOOOOO OOOOOOOOOOOO
OO0 O0O0OO0OO0O0o0O OO0OO0OO0OO0OO0O0O0OO0oO
Souooo Bl 2
@050 Ooé OO};;
o (o]
U) O O o o O
K336 K326
o O O o O O
N2 o 2
~ ~
o O O o O
K337 K327
o O O o o O

Figure 2-4. Adding Varistors for Relay Protection

Chapter 2

Configuring the Module 23

Em ergency Reset Insome hazardous cases (for example, the board inside temperature
becomes too high), you may need to instantly open all channel relays and
prevent any operation on the relays of the module. This can be done by
applying aTTL low voltage or a+5V negative-going pulse to the
"Emergency Reset" port (when enabled) on the front panel of the module, as
shown in Figure 2-5.

At power-up or after areset (* RST), the"Emergency Reset" port isdisabled
to accept an external emergency reset signal. Y ou should enable the
"Emergency Reset" port by DIAGnostic:EMERgency:TRIGger:STATe
command as required. When enabled, the "Emergency Reset" port can
accept aTTL low voltage or a+5V negative-going pulseto forcethe module
to open all channel relays. Furthermore, all relays on the module can not be
operated any more unless the current emergency stateis cleared by
DIAGnostic:EMERgency:CLEar command or *RST command. For more
information on the related SCPI commands, see Chapter 4 starting on
page 55 of this manual.

The "Emergency Reset" port can also be enabled or disabled by directly
writing to the Emergency Control Register, see Appendix B starting on
page 96 of this manual for details.

Emergency Reset
Port

S YL

e

©

0O 0 00000 O0 0o
0O 0 O0OO0O0OOOOO OO
0O 0 O0OO0O0O0OO0OO0OO0OO

0O 0 O O O

0O 0 0O 0 0 o
o 0 O O O ©O

o

\ J

Figure 2-5. Emergency Reset Port of the Module

24 Configuring the Module Chapter 2

Maximum Allowable TheE8480A hasanindividua channel current specification of 12 A.
Module Switch However, if you apply the 12 A to all the channels with arelay contact

resistance of 0.1Q, the power dissipation would be 576 W. Since the
Current EB8404A mainframe can only provide cooling for 100W per slot (keeps the

temperature rise to 15°C), this cannot be allowed to happen.

A reasonable currents and combination of channels for the entire moduleis
shown in Figure 2-6. For example, six channels each carrying 12 A will

produce about 86.5 W of internal dissipation, leading to a 15°C temperature
rise. Figure 2-6 shows how to derate the channels, in terms of current
throughout the channels, to keep internal power dissipation under 86.5W or

15°C temperature rise.

NOTE We highly recommend to decentralize the channels when carrying high
current. That is, six channels each carrying 12 A should use channels 0, 7,
14, 21, 28 and 35 instead of using channels 0 through 5.

\

12 -
11 |
o 10 - . .
< Agilent E8404A Mainframe and
< 94 0.1 Ohm Relay Contact Resistance
.84
=
o 7 4
& 6
o 51
a8
= 44
c
(O]
3
3 5.
1 4
O T 1
123456 78 91011121314151617 181920 2122232425 2627282930 3132 33 34 3536 37 383940
—e—86.5 Watt MF Diss No. of Switches Carrying Current
Figure 2-6. Allowable Switch Current
Chapter 2 Configuring the Module 25

Notes:

26 Configuring the Module Chapter 2

Chapter 3
Using the Module

About This Chapter

NOTE

Thischapter usestypical examplesto show how to use the EB480A module.
See Chapter 4, "Command Reference” for the details of related commands
used in this chapter. Chapter contents are:

®* Module CommandsSummary 28
® Power-On and Reset Conditions 28
® Module Identification, 29
® SwitchingChannels. 31
® Scanning Channels Using Trig InfOut Ports. 33
® Scanning ChannelsUsing TTL Trigger 38
® Using the Scan CompleteBit 43
® Recalingand SavingStates 46
® QueryingtheModule 47
® Detecting Error Conditions. 47
® SynchronizingtheModule 48

All example programs in this chapter were developed on an external PC
using HTBasic or Visual C/C++ asthe programming language. They are
tested with the following system configuration:

® An E1406A command module and an E8480A High Power General
Purpose Switch module are installed in the mainframe.

® The computer is connected to the E1406A command module viaGPIB
interface. The GPIB select codeis 7, the GPIB primary addressis 09,
and the E8480A moduleisat logical address 120 (secondary address =
120/8 = 15).

® The E8480A SCPI driver had been downloaded into the E1406A
command module.

® The SICL Library, the VISA extensions, and an Agilent 82350 GPIB
module had been installed and properly configured in the computer.

Refer to the Agilent E1406A Command Module User’s Guide for more
addressing information. For more details on the related SCPI commands
used in this chapter, see Chapter 4 of this manual.

Do not do register writes if you are controlling the module by a high level
driver such as SCPI or VXIplug& play. Thisis because the driver will not
know the modul e state and an interrupt may occur causing the driver
and/or command module to fail.

Chapter 3

Using the Module 27

Module Commands Summary

Table 3-1 explains some of the SCPI commands used in this chapter. Refer
to Chapter 4 for more information on these commands.

Table 3-1. Commonly Used Commands

Commands Description

[ROUTe:]CLOSe <channel_list> Close the channels in the channel list.

[ROUTe:]CLOSe? <channel_list> Query the state of the channels in the channel list.

[ROUTe:JOPEN <channel_list> Open the channels in the channel list.

[ROUTe:]JOPEN? <channel_list> Query the state of the channels in the channel list.

[ROUTe:]SCAN <channel_list> Define the channel list to be scanned. Channels
specified are closed one at a time.

INITiate[:IMMediate] Start the scan sequence and close the first channel in
the channel list.

TRIGger:SOURce <source> Select the trigger source to advance the scan.

Power-On and Reset Conditions

At power-on or following areset (*RST command), al channels of the
module are open. The *RST command also invalidates the current scan list
(that is, you must specify anew scan list for scanning). Command
parameters are set to the default conditions as shown in Table 3-2.

Table 3-2. *RST Default Conditions

Parameter Default Description
ARM:COUNt 1 Number of scanning cycles is 1.
DIAGnostic:EMERgency:TRIGger:STATe | OFF "Emergency Reset" port is disabled.
TRIGger:SOURce IMM Advances through a scanning list automatically.
INITiate:CONTinuous OFF Continuous scanning is disabled.
OUTPuUt:ECLTrgn[:STATe] OFF Trigger output from ECL trigger line is disabled.
OUTPUt[:EXTernal][:STATe] OFF Trigger output from "Trig Out" port is disabled.
OUTPuUt:TTLTrgn[:STATe] OFF Trigger output from TTL trigger line is disabled.

28 Using the Module Chapter 3

Module Identification

The following example programs use the *RST, *CLS, *IDN?,
SYST:CTYP?, and SY ST:CDES? commands to reset and identify the

module.
Example: 10 bpim A$[50], B$[50], C$[50] | Dimension three string
L variablesto fifty characters.
Identifying Module 5 oyrpuT 70015; "RST: *CLS" I Reset the module and clear
(HTBasic) Satus Register.
30 OUTPUT 70915; "*IDN?" ! Query for module
identification.
40 ENTER 70915; A$ I Enter theresult into A$.
50 OUTPUT 70915; "SYST:CDES? 1" I Query for module description.
60 ENTER 70915; B$ | Enter the result into BS.
70 OUTPUT 70915; "SYST:CTYP? 1" I Query for module type.
80 ENTER 70915; C$ | Enter theresult into C$
90 PRINT A3, B$, C$! Print the contents of the
variable A$, B$ and C$.
100 END

Exam ple: #include <visa.h>
|dent|fy|ng Module #include <stdio.h>

#include <stdlib.h>
(CIC++)

/* Module logical addressis 120, secondary addressis 15 */
#define INSTR_ADDR "GPIB0::9::15::INSTR"

int main()

{
ViStatus errStatus; [* Satus from each VISA call */
ViSession ViRM; [* Resource manager session */
ViSession E8480A,; /* Module session */
char id_string[256]; * 1D string */
char m_desp[256]; /* Module description */
char m_type[256]; /* Module type */

/* Open the default resource manager */
errStatus = viOpenDefaultRM (&viRM);
if(VI_SUCCESS > errStatus){
printf("ERROR: viOpenDefaultRM() returned 0x%x\n", errStatus);
return errStatus;}

/* Open the modul e instrument session */
errStatus = viOpen(viRM,INSTR_ADDR, VI_NULL,VI_NULL,&E8480A);
if(VI_SUCCESS > errStatus){
printf("ERROR: viOpen() returned 0x%x\n", errStatus);
return errStatus;}

Chapter 3 Using the Module 29

/* Reset the module and clear the status registers */
errStatus = viPrintf(E8480A, "*RST;*CLS\n");
if(VI_SUCCESS > errStatus){

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Query the module ID string */
errStatus = viQueryf(E8480A, "*IDN?\n", "%t", id_string);
if (VI_SUCCESS > errStatus) {
printf("ERROR: viQueryf() returned 0x%x\n", errStatus);
return errStatus;}
printf("ID is %s\n", id_string);

/* Query the module description */
errStatus = viQueryf(E8480A, "SYST:CDES? 1\n", "%t", m_desp);
if (VI_SUCCESS > errStatus) {
printf("ERROR: viQueryf() returned 0x%x\n", errStatus);
return errStatus;}
printf("Module Description is %s\n", m_desp);

/* Query the module type */
errStatus = viQueryf(E8480A, "SYST:CTYP? 1\n", "%t", m_type);
if (VI_SUCCESS > errStatus) {
printf("ERROR: viQueryf() returned 0x%x\n", errStatus);
return errStatus;}
printf("Module Type is %s\n", m_type);

/* Close the module instrument session */
errStatus = viClose (E8480A);
if (VI_SUCCESS > errStatus) {
printf("ERROR: viClose() returned 0x%x\n", errStatus);
return 0;}

* Close the resource manager session */
errStatus = viClose (ViRM);
if (VI_SUCCESS > errStatus) {
printf("ERROR: viClose() returned 0x%x\n", errStatus);
return 0;}

return VI_SUCCESS;

30 Using the Module Chapter 3

Switching Channels

One primary use of the E8480A High Power General Purpose Switch
module isto switch and route high-current sources such as AC and DC
power suppliesin an automated test system. Use CLOSe <channel_list> to
close the channel relays, or use OPEN <channel_list> to open the channel
relays. The channel_list has the form of:

® (@ccnn) for asingle channel

® (@ccnn,ccnn) for multiple channels

® (@ccnn:ccnn) for sequential channels

® (@ccnn:ccnn,cenn;ccnn) for groups of sequential channels
® or any combination of the above.

where cc = card humber (01-99) and nn = channel number (00-39).

Figure 3-1 shows atypical general purpose relay configuration for voltage
switching. When the channel 00 relay is closed, the power supply voltageis
applied to Device Under Test 1 (DUT-1). When the channel 02 relay is
closed, the voltage is applied to Device Under Test 2 (DUT-2).

~
: E8480A Switch Module
J1
. Devi ce
. oo o0 Under Test 1
: ‘ CHOO
: 00 Ext er nal
: o—— 000 24V Power Supply
CHO1 660 +0 o-
Devi ce
: v 00 Under Test 2
: ‘ CHO2
: 00O
J

Figure 3-1. Voltage Switching

The following example programs were written in HTBasic and C/C++
programming languages respectively. In the example, it will close channels
00 and 02 to apply the external power supply to both devices (DUT-1 and
DUT-2), then query to see whether they are closed. Theresult isreturned to
the computer and displayed (1 = channel closed, 0 = channel open).

Chapter 3

Using the Module 31

Example: Closing
Multiple Channels
(HTBasic)

Example: Closing
Multiple Channels
(C/IC++)

10 DIM A$[20] ! Dimension a string variableto
twenty characters.
20 OUTPUT 70915; "™*RST,; *CLS" ! Reset the module and clear
Satus Register.
30 OUTPUT 70915; "ROUT:CLOS (@100,102)"
I Close channels 100 and 102.

40 OUTPUT 70915; "ROUT:CLOS? (@100,102)"
I Query closurestateof channels

100 and 102.

50 ENTER 70915; A$ | Enter the result into A$.

60 PRINT A$ I'"1,1" returned indicates they
are closed.

70 END

#include <visa.h>
#include <stdio.h>
#include <stdlib.h>

/* Module logical addressis 120, secondary addressis 15 */
#define INSTR_ADDR "GPIB0::9::15::INSTR"

int main()

{
ViStatus errStatus; [* Satus from each VISA call */
ViSession ViRM; /* Resource manager session */
ViSession E8480A,; /* Module session */
char stat[20]; [* channel states*/

[* Open the default resource manager */
errStatus = viOpenDefaultRM (&viRM);
if(VI_SUCCESS > errStatus){
printf("ERROR: viOpenDefaultRM() returned 0x%x\n", errStatus);
return errStatus;}

/* Open the modul e instrument session */
errStatus = viOpen(viRM,INSTR_ADDR, VI_NULL,VI_NULL,&E8480A);
if(VI_SUCCESS > errStatus){
printf("ERROR: viOpen() returned 0x%x\n", errStatus);
return errStatus;}

I* Reset the module and clear status registers*/
errStatus = viPrintf(E8480A, "*RST;*CLS\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

* Close channels 00 and 02 */
errStatus = viPrintf(E8480A, "CLOS (@100,102)\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

32 Using the Module

Chapter 3

/* Query channels 00 and 02 closure state */
errStatus = viQueryf(E8480A, "ROUT:CLOS? (@100,102)\n", "%t", stat);
if (VI_SUCCESS > errStatus) {
printf("ERROR: viQueryf() returned 0x%x\n", errStatus);
return errStatus;}
printf("The states of channels 00 and 02 are: %s\n", stat);

* Close the module instrument session */
errStatus = viClose (E8480A);
if (VI_SUCCESS > errStatus) {
printf("ERROR: viClose() returned 0x%x\n", errStatus);
return 0;}

/* Close the resource manager session */
errStatus = viClose (ViRM);
if (VI_SUCCESS > errStatus) {
printf("ERROR: viClose() returned 0x%x\n", errStatus);
return 0;}

return VI_SUCCESS;

Scanning Channels

For the E8480A module, scanning channels consists of closing a specified
set of channels, one at atime. Y ou can scan any combination of channelsfor
asingle-module or a multiple-module switchbox. Single, multiple, or
continuous scanning modes are available.

For multiple-modul e switchbox, the channels to be scanned can extend
across switch modules. For example, for a two-modul e switchbox
instrument, SCAN(@100:239) will scan all channels of both modules.

Use TRIGger:SOURce command to specify the source to advance the scan.
Use OUTPut subsystem commands to select the E1406A command module
Trig Out port, or ECL Trigger bus lines (0-1), or TTL Trigger bus lines (0-7).
Use ARM:COUNt <number> to set multiple/continuous scans (from 1 to
32,767 scans). Use INITiate:CONTinuous ON to set continuous scanning.
See Chapter 4 of this manual for information about these SCPI commands.

Example: Scanning Thisexample uses E1406A command module's "Trig In" and "Trig Out"
; ports to synchronize E8480A module channel closures with an external
C_h annels Usin g measurement multimeter (Agilent 34401A). See Figure 3-2 for typical user
Trig In/Out Ports connections. For measurement synchronization:

-- E1406A’s Trig Out port (connected to the 34401A multimeter’s
External Trigger port) isused by the EB480A moduleto trigger the
multimeter to perform a measurement.

-- E1406A’s Trig I n port (connected to the 34401A multimeter’s
Voltmeter Complete port) isused by the multimeter to advance the
E8480A channel to scan.

Chapter 3 Using the Module 33

For this example, the Low (L) contacts of channels 00-09 are connected to
the different DUTs (devices under test). The High (H) contacts of channels
00-09 are connected together to the multimeter’ s measurement input. These
channels are then scanned and different DUTs are switched in for a

measurement.
E1406A
Command Module
+5V —| |- H* L
ey oV - Trig In—
\th 72 L
ov - - Trig Out_ /g/ =
—ee | [T
) o= 2 |
[=
CIB o (X
I)
VM Comp Ext Trig E8480A
Switch Module
L | HI (CH 00-09) Y.
Agilent 34401A Multimeter (from rear view)

Figure 3-2. Scanning Channels using Trig In/out Ports

Programming with
HTBasic

The following HTBasic program sets up the external multimeter (Agilent
34401A) to scan making DC voltage measurements. The E8480A switch

module has alogical address 120 (secondary address 15), and the external
multimeter has an address of 722.

10

20

30

40

50

60

70

80

90

DIM Rdgs(1:10)
OUTPUT 722; "*RST;*CLS"

OUTPUT 70915; "*RST;*CLS"

OUTPUT 722; "CONF:VOLT:DC 12"

OUTPUT 722; "TRIG:SOUR EXT"

OUTPUT 722; "TRIG:COUN 10"

OUTPUT 722; "INIT"
WAIT 1

OUTPUT 70915; "OUTP ON"

! Dimension a variableto store
readings.

! Reset the dmmand clear its
status registers.

! Reset the switch module and
clear its status registers.

! Set the dmm for DCV
measurement, 12 V maximum.

I Set the dmm trigger sourceto
EXTernal triggering.

I Set the dmm trigger count
to 10.

I Set the dmm to the
wait-for-trigger state.

I Wait for 1 second.

I Set the switch modul e output
pulses on E1406A "Trig Out"
port when channel closed.

34 Using the Module

Chapter 3

Programming with C/C++

100 OUTPUT 70915; "TRIG:SOUR EXT" I Set the switch module trigger
source to external triggering.
110 OUTPUT 70915; "SCAN (@100:109)" ! Define channel list (00-09) for

scanning.

120 OUTPUT 70915; "INIT" I Sart scan and close channel
100.

130 OUTPUT 722; "FETCH?" ! Read measurement results
fromthe dmm.

140 ENTER 722; Rdgs(*) I Enter measurement results.

150 PRINT Rdgs(*) I Display measurement results.

160 END

The following program was written and tested in Microsoft® Visual C++
using the VISA extensions but should compile under any standard ANSI C
compiler. This example configures the external multimeter (Agilent
34401A) to scan making DC voltage measurements.

#include <visa.h>
#include <stdio.h>
#include <stdlib.h>

/* Module logical addressis 120, secondary addressis 15 */

#define INSTR_ADDR "GPIB0::9::15::INSTR"
[* Interface address for 34401A Multimeter */

#define MULTI_ADDR "GPIBO0::22::INSTR"

int main()

{
ViStatus errStatus; [* Satus fromeach VISA call */
ViSession ViRM; /* Resource manager session */
ViSession E8480A,; /* Module session */
ViSession dmm; /* Multimeter session */
int loop; * loop counter */
int opc_int; [* OPC? variable */
double readings [10]; /* Reading Sorage */

/* Open the default resource manager */
errStatus = viOpenDefaultRM (&viRM);
if(VI_SUCCESS > errStatus){
printf("ERROR: viOpenDefaultRM() returned 0x%x\n", errStatus);
return errStatus;}

/* Open the switch module instrument session */
errStatus = viOpen(ViRM,INSTR_ADDR,VI_NULL,VI_NULL,&E8480A);
if(VI_SUCCESS > errStatus){
printf("ERROR: viOpen() returned 0x%x\n", errStatus);
return errStatus;}

/* Open the multimeter instrument session */
errStatus = viOpen(ViRM,MULTI_ADDR,VI_NULL,VI_NULL,&dmm);
if(VI_SUCCESS > errStatus){
printf("ERROR: viOpen() returned 0x%x\n", errStatus);
return errStatus;}

Chapter 3

Using the Module 35

[* Set timeout value for multimeter and switch module */

viSetAttribute (dmm,VI_ATTR_TMO_VALUE,1000000);
viSetAttribute (E8480A,VI_ATTR_TMO_VALUE,1000000);

/* Reset the multimeter and clear its status registers*/
errStatus = viPrintf(dmm, "*RST;*CLS\n");
if(VI_SUCCESS > errStatus){

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

* Configure dmm for DCV measurements, 12V maximum */
errStatus = viPrintf(dmm, "CONF:VOLT:DC 12\n");
if(VI_SUCCESS > errStatus){

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

[* Set multimeter trigger sourceto EXTernal */
errStatus = viPrintf(dmm, "TRIG:SOUR EXT\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Set trigger count to 10 */
errStatus = viPrintf(dmm, "TRIG:COUN 10\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

[* Initialize multimeter, wait for triggering */
errStatus = viPrintf(dmm, "INIT\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* The dmm requires about 20 msto change to wait-for-trigger state*/

_sleep(1000);

I* Reset the switch module and clear its status registers*/
errStatus = viPrintf(E8480A, "*RST;*CLS\n");
if (VI_SUCCESS > errStatus) {
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Enable the switch module output pulses on E1406A "Trig Out" port */
/* when a channel is closed */

errStatus = viPrintf(E8480A, "OUTP ON\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

36

Using the Module

Chapter 3

* Set switch module trigger source to EXTernal */
errStatus = viPrintf(E8480A, "TRIG:SOUR EXT\n");
if(VI_SUCCESS > errStatus){

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

[* Set up a scan list: channels 100 through 109*/
errStatus = viPrintf(E8480A, "SCAN (@100:109)\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Pause until ready */
errStatus = viQueryf(E8480A, "*OPC?\n", "%t", &opc_int);
if(VI_SUCCESS > errStatus){
printf("ERROR: viQueryf() returned 0x%x\n", errStatus);
return errStatus;}

[* Sart scan and close channel 100*/
errStatus = viPrintf(E8480A, "INIT\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

[* Wait for scan to complete */
errStatus = viPrintf(E8480A, "STAT:OPER:ENAB 256\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

for (; ;){
errStatus = viQueryf(E8480A, "*STB?\n", "%d", &opc_int);
if (opc_int&0x80)
break;}
printf("Scan has completed\n");

* Get readings from multimeter */
errStatus = viQueryf(dmm, "FETC?\n", "%,10If", readings);
if(VI_SUCCESS > errStatus){
printf("ERROR: viQueryf() returned 0x%x\n", errStatus);
return errStatus;}

/* Display the measurement results */
for (loop=0;loop<10;loop++) {
printf ("Reading %d is: %lIf\n", loop, readings[loop]); }

/* Close the EB480A instrument session */
errStatus = viClose (E8480A);
if (VI_SUCCESS > errStatus) {
printf("ERROR: viClose() returned 0x%x\n", errStatus);
return 0;}

Chapter 3

Using the Module

37

I* Close the multimeter instrument session */
errStatus = viClose (dmm);
if (VI_SUCCESS > errStatus) {
printf("ERROR: viClose() returned 0x%x\n", errStatus);
return 0;}

* Close the resource manager session */
errStatus = viClose (ViRM);
if (VI_SUCCESS > errStatus) {
printf("ERROR: viClose() returned 0x%x\n", errStatus);
return 0;}

return VI_SUCCESS;

Exam P le: Scannin 0 Thisexample uses E1406A command module’s TTL trigger buslinesto
; synchronize E8480A channel closures with a system multimeter (Agilent
Channels L_JS Iing E1412A). See Figure 3-3 for typical user connections. For measurement
TTL Trigger synchronization:

-- E1406A's TTL trigger busline 0 is used by the E8480A module to
trigger the multimeter to perform a measurement.

-- E1406A’s TTL trigger busline 1 is used by the multimeter to
advance the E8480A channel to scan.

/ Part of VXlbus \

o= === — e e e e e e B 2
1
1
| pmmm e e S E8480A
o E1406A E1412A P Swi tch Modul e
I 1 Comnmand Module Ml tineter Modul e ! W
1 1 I | -3;
Lo] @ Aﬂh ! ©
1 I 1 —
| | TTLTrgO Trigger 1 lasl
1 L--»} 88 _____ o § _g_>:|8g ﬂ L_TIL_TEQ_W__ 2ce
| I soo
I | oes
(I 1 Lo _TTrg0 | p
TTLTrg] VM I
Complete —
] ey
D Sp 22
O
HI \§©
LO T @ Connect H contacts of CHO0-09 together
to the H input of E1412A for neasurenent —
9} @ [ooo]
0 2ot
° cos

/
;
N

Figure 3-3. Scanning Using TTL Trigger Bus Lines

38 Using the Module Chapter 3

Programming with

HTBasic

Figure 3-3 shows how to connect the switch module to the E1412A
multimeter module. The connections shown with dotted lines are not actual
hardware connections. These connections indicate how the E1406A
firmware operates to accomplish the triggering. For this example, the Low
(L) contacts of channels 00-09 are connected to the different DUTs. The
High (H) contacts of channels 00-09 are connected together, and the
measurements are taken from them. These channels are then scanned and
different DUTs are switched in for a measurement.

This example program was written in HTBasic programming language. It
configuresthe multimeter (E1412A) for DC voltage measurements, setsthe
switch moduleto scan channels 00 through 09. The E1412A multimeter has
aGPIB address of 70903 and the switch module hasalogica address of 120
(GPIB address of 70915).

10 DIM Rdgs(1:10) I Dimension a variable to
store readings.

20 OUTPUT 70903; "*RST;*CLS" ! Reset the dmm and clear its
status registers.

30 OUTPUT 70915; "*RST;*CLS" ! Reset the switch module and

clear its status registers.

40 OUTPUT 70903; "CONF:VOLT 12,MIN" ! Set the dmm for DCV
measurement, 12 V maximum,
min resolution.

50 OUTPUT 70903; "OUTP:TTLT1:STAT ON"

| Setthedmmpulses TTL trigger
line 1 on measurement
complete.

60 OUTPUT 70903; "TRIG:SOUR TTLTO" ! Setthedmmto betriggered by
TTL trigger line 0.

70 OUTPUT 70903; "TRIG:DEL 0.01" I Set the dmmtrigger delay time
to 10 ms
80 OUTPUT 70903; "TRIG:COUN 10" I Set the dmm trigger count
to 10.
90 OUTPUT 70903; "*OPC?" I Check to see if dmm ready
100 ENTER 70903; Check
110 OUTPUT 70903; "INIT" I Set the dmmto the

wait-for-trigger state.

120 OUTPUT 70915; "OUTP:TTLTO:STAT ON"
I Set the switch module pulses
TTL trigger line 0 on channel
closed.
130 OUTPUT 70915; "TRIG:SOUR TTLT1" ! Set the switch moduleto be
triggered by TTL trigger

line 1.

140 OUTPUT 70915; "SCAN (@100:109)" ! Define channels 00-09 for
scanning.

150 OUTPUT 70915; "INIT" I Initialize scan and close
channel 100.

160 OUTPUT 70903; "FETCH?" ! Read measurement results
from the dmm.

170 ENTER 70903; Rdgs(*) I Enter measurement results.

180 PRINT Rdgs(*) I Display measurement results.

190 END

Chapter 3

Using the Module 39

Programming with C/C++

The following program was written and tested in Microsoft® Visual C++
using the VISA extensions but should compile under any standard ANSI C
compiler. This example configures the multimeter for DC voltage
measurements, sets the switch module to scan channels 00 through 09.

#include <visa.h>
#include <stdio.h>
#include <stdlib.h>

/* Switch module logical address is 120, secondary addressis 15 */

#define INSTR_ADDR "GPIBO0::9::15::INSTR"
[* Interface address for E1412 Multimeter */

#define MULTI_ADDR "GPIBO0::9::3:1INSTR"

int main()

{
ViStatus errStatus; [* Satus from each VISA call*/
ViSession ViRM; * Resource manager session */
ViSession E8480A,; /* Module session */
ViSession E1412A,; /* Multimeter session */
int loop; * loop counter */
char opc_int[21]; [* OPC? variable */
double readings [10]; I* Reading Storage*/

[* Open the default resource manager */
errStatus = viOpenDefaultRM (&viRM);
if(VI_SUCCESS > errStatus){
printf("ERROR: viOpenDefaultRM() returned 0x%x\n", errStatus);
return errStatus;}

* Open the switch module instrument session */
errStatus = viOpen(viRM,INSTR_ADDR, VI_NULL,VI_NULL, &E8480A);
if(VI_SUCCESS > errStatus){
printf("ERROR: viOpen() returned 0x%x\n", errStatus);
return errStatus;}

/* Open the multimeter instrument session */
errStatus = viOpen(viRM,MULTI_ADDR, VI_NULL,VI_NULL, &E1412A);
if(VI_SUCCESS > errStatus){
printf("ERROR: viOpen() returned 0x%x\n", errStatus);
return errStatus;}

[* Set timeout value for multimeter and switch module */

viSetAttribute (E1412A, VI_ATTR_TMO_VALUE, 1000000);
viSetAttribute (E8480A, VI_ATTR_TMO_VALUE, 1000000);

I* Reset the multimeter, clear status registers™/
errStatus = viPrintf(E1412A, "*RST;*CLS\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

40 Using the Module

Chapter 3

[* Configure multimeter for DCV measurements, 12V max, min resolution */

errStatus = viPrintf(E1412A, "CONF:VOLT 12,MIN\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Set multimeter to be triggered by TTL trigger line 0 */
errStatus = ViPrintf(E1412A, "TRIG:SOUR:TTLTO\n");
if(VI_SUCCESS > errStatus){

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Enable the E1412A pulses TTL trigger line 1 on measurement complete */

errStatus = viPrintf(E1412A, "OUTP:TTLT1 ON\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

[* Set trigger delay timeto 1 ms, trigger count to 10 */
errStatus = viPrintf(E1412A, "TRIG:DEL 0.001;COUN 10\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

[* Pause until multimeter isready */
errStatus = viQueryf(E1412A, "*OPC?\n", "%t", opc_int);
if(VI_SUCCESS > errStatus){
printf("ERROR: viQueryf() returned 0x%x\n", errStatus);
return errStatus;}

/* Initialize multimeter, wait for trigger */
errStatus = viPrintf(E1412A, "INIT\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

I* Reset the switch module, clear the status registers*/
errStatus = viPrintf(E8480A, "*RST;*CLS\n");
if (VI_SUCCESS > errStatus) {
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

[* Set the switch module pulses TTL Trigger line 0 on channel closed */
errStatus = viPrintf(E8480A, "OUTP:TTLTO ON\n");
if(VI_SUCCESS > errStatus){

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

Using the Module

41

[* Set the switch module pulses TTL Trigger line 0 on channel closed */

errStatus = viPrintf(E8480A, "TRIG:SOUR TTLT1\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

[* Set up a scan list: channels 00 through 09 */
errStatus = viPrintf(E8480A, "SCAN (@100:109)\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Pause until ready */
errStatus = viQueryf(E8480A, "*OPC?\n", "%t", opc_int);
if(VI_SUCCESS > errStatus){
printf("ERROR: viQueryf() returned 0x%x\n", errStatus);
return errStatus;}

[* Sart scan and close channel 100 */
errStatus = viPrintf(E8480A, "INIT\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

[* Wait for scan complete*/
errStatus = viPrintf(E8480A, "STAT:OPER:ENAB 256\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

for (; ;)

errStatus = viQueryf(E8480A, "*STB?\n", "%d", &opc_int);

if (opc_int&0x80)
break;}
printf("Scan has completed\n");

[* Get readings from multimeter */

errStatus = viQueryf(E1412A, "FETC?\n", "%,10If", readings);

if(VI_SUCCESS > errStatus){
printf("ERROR: viQueryf() returned 0x%x\n", errStatus);
return errStatus;}

/* Display measurement results */
for (loop=0;loop<10;loop++) {
printf ("Reading %d is: %lIf\n", loop, readings[loop]); }

I* Close the EB480A instrument session */
errStatus = viClose (E8480A);
if (VI_SUCCESS > errStatus) {
printf("ERROR: viClose() returned 0x%x\n", errStatus);
return 0;}

42 Using the Module

Chapter 3

* Close the multimeter instrument session */
errStatus = viClose (E1412A);
if (VI_SUCCESS > errStatus) {
printf("ERROR: viClose() returned 0x%x\n", errStatus);
return 0;}

* Close the resource manager session */
errStatus = viClose (ViRM);
if (VI_SUCCESS > errStatus) {
printf("ERROR: viClose() returned 0x%x\n", errStatus);
return 0;}

return VI_SUCCESS;

Using the Scan Complete Bit

Example: Using the
Scan Complete Bit

(HTBasic)

Y ou can use the Scan Complete hit (bit 8) in the Operation Status Register
(in the command module) of a switchbox to determine when a scanning
cycle completes (no other bitsin the register apply to the switchbox). Bit 8
has a decimal value of 256 and you can read it directly with the
STATus:OPERation[:EVENt]? command. See Page 76 in Chapter 4 for more
information.

When enabled by the STAT:OPER:ENAB 256 command, the Scan Complete
bit will be reported as bit 7 of the Status Byte Register. Use the GPIB Serial
Poll or the |IEEE 488.2 Common Command *STB? to read the Status Byte

Register.

When bit 7 of the Status Register is enabled by the *SRE 128 Common
Command to assert a GPIB Service Request (SRQ), you can interrupt the
computer when the Scan Compl ete bit is set, after a scanning cycle
completes. This allows the computer to do other operations while the
scanning cycleisin progress.

The following example program was written in HTBasic programming
language. It monitorsbit 7 of the Status Byte Register to determine when the
scanning cycle is complete. The computer interfaces with the E1406A
command module over GPIB. The GPIB select codeis 7, the GPIB primary
addressis 09, and the GPIB secondary addressis 15.

10 OUTPUT 70915; "*RST;*CLS" I Reset the switch module.
20 OUTPUT 70915; "STATUS:OPER:ENABLE 256"

I Enable Scan Compl ete Bit.
30 OUTPUT 70915; "TRIG:SOUR IMM" I Set the switch module for

internal triggering.
40 OUTPUT 70915; "SCAN (@100:105)" ! Set up channdl list to scan.
50 OUTPUT 70915; "*OPC?" ! Wait for operation complete.
60 ENTER 70915; A$
70 PRINT "*OPC? =";A$%

Chapter 3

Using the Module 43

80 OUTPUT 70915; "*STB?" I Query status byte register.
90 ENTER 70915; A$
100 PRINT "Switch Status ="; A$

110 OUTPUT 70915; "INIT" I Sart scan and close the
channel 100.

120 1 =0

130 WHILE(Il =0) I Stay in loop until value
returned from the command
SPOLL (70915).

140 | =SPOLL (70915)

150 PRINT "Waiting for scan to complete...

160 END WHILE

170 1 = SPOLL (70915) 1 "128" returned indicates scan
has compl eted.

180 PRINT "Scan complete: spoll = "1

190 END

Example: Using the #include <visa.h>
Scan Complete Bit #include <stdio.h>

#include <stdlib.h>
(CIC++)

/* Module logical addressis 120, secondary addressis 15 */
#define INSTR_ADDR "GPIB0::9::15::INSTR"

int main()

{
ViStatus errStatus; [* Satus from each VISA call */
ViSession ViRM; [* Resource manager. session */
ViSession E8480A,; /* Module session */
int scanbit; [* Variable for Scan Complete

Bit*/

/* Open the default resource manager */
errStatus = viOpenDefaultRM (&viRM);
if(VI_SUCCESS > errStatus){
printf("ERROR: viOpenDefaultRM() returned 0x%x\n", errStatus);
return errStatus;}

/* Open the modul e instrument session */
errStatus = viOpen(viRM,INSTR_ADDR, VI_NULL,VI_NULL,&E8480A);
if(VI_SUCCESS > errStatus){
printf("ERROR: viOpen() returned 0x%x\n", errStatus);
return errStatus;}

[* Set timeout value for the module */
viSetAttribute (E8480A,VI_ATTR_TMO_VALUE,1000000);

/* Reset the module and clear its status registers*/
errStatus = viPrintf(E8480A, "*RST;*CLS\n");
if (VI_SUCCESS > errStatus) {
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

44 Using the Module Chapter 3

[* Enable the Scan Compl ete Bit */
errStatus = viPrintf(E8480A, "STAT:OPER:ENAB 256\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

[* Set trigger source to IMMediate for internal triggering */
errStatus = viPrintf(E8480A, "TRIG:SOUR IMM\n");
if(VI_SUCCESS > errStatus){

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

* Specify a channel list for scanning */
errStatus = viPrintf(E8480A, "SCAN (@100:105)\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

[* Sart Scan and close channel 100 */
errStatus = viPrintf(E8480A, "INIT\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

[* Say in loop until scan complete */

for (31
errStatus = viQueryf(E8480A, "*STB?\n", "%d", &scanbit);
printf("Waiting for scan to complete...\n");
if (scanbit&0x80)
break;}
printf("Scan has completed\n");

/* Close the E8480A instrument session */
errStatus = viClose (E8480A);
if (VI_SUCCESS > errStatus) {
printf("ERROR: viClose() returned 0x%x\n", errStatus);
return 0;}

* Close the resource manager session */
errStatus = viClose (ViRM);
if (VI_SUCCESS > errStatus) {
printf("ERROR: viClose() returned 0x%x\n", errStatus);
return 0;}

return VI_SUCCESS;

Chapter 3

Using the Module

45

Recalling and Saving States

Example: Saving
and Recalling
Instrument State
(HTBasic)

The*SAV <numeric_state> command saves the current instrument state.
The state number (0-9) is specified by the numeric_state parameter. The
settings saved by this command are as follows:

® Channel relays states (open or closed)
® ARM:COUNt

® TRIGger:SOURce

® OUTPut:STATe

® INITiate:CONTinuous

The*RCL <numeric_state> command recalls a previously saved state
specified by the numeric_state parameter. If no * SAV was previously
executed for the numeric_state, * RST default settings are used.

The following example program was written in HTBasic programming
language. It demonstrates how to save and recall the switch module states.
It first closes channels 100 through 119, then saves current channel statesto
the state 3. After reset the module to open all channels of the module, then
recall the stored state 3 and verify whether the channels are set to the saved
state (channels 100 through 119 are closed).

10 DIM A$[100] I Dimensionastring variablesto
100 characters.

20 OUTPUT 70915; "*RST; *CLS" ! Reset the module and clear
Satus Register.

30 OUTPUT 70915; "CLOS (@100:119)" ! Close channels 00 through 19.

40 OUTPUT 70915; "*SAV 3" ! Save as numeric state 3.

50 OUTPUT 70915; "*RST; *CLS" ! Reset the module and clear
Satus Register.

60 OUTPUT 70915; "CLOS? (@100:139)" ! Queryall channelsstate after a
reset.

70 ENTER 70915; A$ | Enter theresult into A$.

80 PRINT "After a reset, all channels states: "; A$
! Print the contents of the
variable A$.
90 OUTPUT 70915; "*RCL 3" I Recall numeric state 3.
100 OUTPUT 70915; "CLOS? (@100:139)" ! Queriesthe closed channels
after recalling the state 3.

110 ENTER 70915; A$ | Enter the result into A$.

120 PRINT "After recall, all channels states: "; A$
! Print the contents of the
variable A$. 1s for the first 20
channels and Os for the
remaining 16 channels should
be displayed.
130 END

46 Using the Module

Chapter 3

Querying the Module

All query commands end with a"?'. The datais sent to the output buffer
whereyou can retrieveit into your computer. Thefollowing summarizesthe
guery commands you can use to obtain the specific information of the
module. See Chapter 4 for more details of these commands.

Channel closed: CLOS?

Channel open. OPEN?

Module Description: SYST:CDES?

Module Type: SYST:.CTYP?

System error: SYST:ERR?

Emergency Status: DIAG.EMER:STAT?
Emergency Port Status: DIAG:EMER:TRIG:STAT?

Detecting Error Conditions

Example: Querying
Errors (HTBasic)

The SYSTem:ERRor? command queries the instrument’s error queue for
error conditions. If no error occurs, the switch module responds with 0,"No
error”. If errors do occur, the module will respond with the first oneinits
error queue. Subsequent queries continue to read the error queue until it is
empty. The response takes the following form:

<err_number>, <err_message>

where <err_number> is an integer ranging from -32768 to 32767, and the
<err_message> isashort description of the error and the maximum string
length is 255 characters. See Appendix C of this manual for alisting of the
module error numbers and corresponding messages.

The following example program was written in HTBasic programming
language. It attempts to access an illegal channel number and then polls for
the error message.

10 DIM Err_num$[256] ! Dimension a string variable.
20 OUTPUT 70915; "CLOS (@140)" I Tryto closeanillegal

channel 140.
30 OUTPUT 70915; ":SYST:ERR?" I Check for a systemerror.
40 ENTER 70915;Err_num$ I Enter the error into Err_nums.
50 PRINT "Error: ";Err_num$! Print error +2001, "Invalid

channel number".
60 END

Chapter 3

Using the Module 47

Synchronizing the Instruments

Example:
Synchronizing the
Instruments
(HTBasic)

This section shows how to synchronize a switch module with other
instruments when making measurements. In the following example, the
modul e switches asignal to amultimeter, then verifiesthat the switching is
complete before the multimeter begins a measurement.

This example program was written in HTBasic language. Assuming the
multimeter (E1412A) hasthe GPIB address of 70903 and the switch module
has alogical address of 120 (GPIB address of 70915).

10 OUTPUT 70915; "*RST" I Reset the module.

20 OUTPUT 70915; "CLOS (@101)" I Close a channel.

30 OUTPUT 70915; "*OPC?" ! Wait for operation complete.

40 ENTER 70915;0PC_value

50 OUTPUT 70915; "CLOS? (@101)" ! Verify that the channdl is
closed.

60 ENTER 70915;A

70 IF A=1 THEN

80 OUTPUT 70903; "MEAS:VOLT:DC?" | When channel is closed, make
the measure.

90 ENTER 70903; Meas_value

100 PRINT Meas_value ! Print the measured value.

110 ELSE

120 PRINT "CHANNEL NOT CLOSE"

130 END IF

140 END

48 Using the Module

Chapter 3

Chapter 4
Command Reference

About This Chapter

This chapter describes Standard Commands for Programmabl e Instruments (SCPI)
and summarizes | EEE 488.2 Common (*) commands applicable to the module. See
the E1406A Command Module User’s Manual for additional information on SCPI
and common commands. This chapter contains the following sections.

® Command TYPES. . . oot 49
® SCPl CommandReference ..., 51
® SCPl Command Quick Reference 83
* |EEE 488.2 Common Command Reference 84

Command Types

Common
Command
Format

SCPI
Command
Format

Command
Separator

Commands are separated into two types: | EEE 488.2 Common Commandsand SCPI
Commands.

The IEEE 488.2 standard defines the common commands that perform functions
such asreset, self-test, status byte query, and so on. Common commands are four or
five characters in length, always begin with an asterisk (*), and may include one or
more parameters. The command keyword is separated from the first parameter by a
space character. Some examples of common commands are shown below:

*RST *ESR <unmask> *STB?

The SCPI commands perform functions like closing/opening switches, making
measurements, querying instrument states or retrieving data. A subsystem command
structure is a hierarchical structure that usually consists of atop level (or root)
command, one or more lower level commands, and their parameters. The following
example shows part of atypical subsystem:

[ROUTe:]
CLOSe <channel_list>
SCAN <channel_list>

[ROUTe:] isthe root command, CLOSe and SCAN are the second level commands
with <channel_list> as a parameter.

A colon () always separates one command from the next lower level command as
shown below:

ROUTe:SCAN <channel_list>

Colonsseparatethe root command from the second level command (ROUTe:SCAN).
If athird level existed, the second level is also separated from the third level by a
colon.

Chapter 4

Command Reference 49

Abbreviated
Commands

Implied
Commands

Variable
Commands

Parameters

The command syntax shows most commands as a mixture of upper and lower case
letters. The upper caselettersindicate the abbreviated spelling for the command. For
shorter program lines, send the abbreviated form. For better program readability, you
may send the entire command. The instrument will accept either the abbreviated
form or the entire command.

For example, if the command syntax shows TRIGger, then TRIG and TRIGGER are
both acceptable forms. Other forms of TRIGger, such as TRIGG or TRIGGE will
generate an error. Y ou may use upper or lower case letters. Therefore, TRIGGER,
trigger, and TrigGeR are al acceptable.

Implied commands are those which appear in square brackets ([]) in the command
syntax. (Note that the brackets are not part of the command and are not sent to the
instrument.) Suppose you send a second level command but do not send the
preceding implied command. In this case, the instrument assumes you intend to use
the implied command and it responds as if you had sent it. Examine the partia
[ROUTe:] subsystem shown below:

[ROUTe:]
CLOSe? <channel_list>

The root command [ROUTe:] isan implied command. To make a query about a
channel’ s present status, you can send either of the following command statements:

ROUT:CLOS? <channel_list> or CLOS? <channel_list>

Some commands have what appears to be a variable syntax. For example:
OUTPuUt:TTLTrgn

In this command, the "n" is replaced by a number (range from 0 to 7). No spaceis
left between the command and the number because the number is part of the
command syntax instead of a parameter.

Parameter Types. The following table contains explanations and examples of
parameter types you might see later in this chapter.

Parameter Type Explanations and Examples

Numeric Accepts all commonly used decimal representations of number
including optional signs, decimal points, and scientific notation.

123, 123E2, -123, -1.23E2, .123, 1.23E-2, 1.23000E-01. Special
cases include MINimum, MAXimum, and DEFault.

Boolean Represents a single binary condition that is either true or false
ON, OFF 1,0
Discrete Selects from a finite number of values. These parameters use

mnemonics to represent each valid setting.

An example is the TRIGger:SOURce <source> command where
source can be BUS, EXT, HOLD, or IMM.

50 Command Reference

Chapter 4

Linking
Commands

Optional Parameters. Parameters shown within square brackets ([]) are optional
parameters. (Note that the brackets are not part of the command and are not sent to
the instrument.) If you do not specify avalue for an optional parameter, the
instrument uses the default value. For example, consider the ARM:COUNt?[<MIN |
MAX>] command. If you send the command without specifying a parameter, the
present ARM:COUNT setting is returned. If you send the MIN parameter, the
command returns the minimum count available. If you send the MAX parameter, the
command returns the maximum count available. Be sure to place a space between
the command and the parameter.

Linking IEEE 488.2 Common Commandswith SCPI Commands. Usea
semicolon between the commands. For example:

*RST;CLOS (@100) or TRIG:SOUR BUS;*TRG

LinkingMultiple SCPI Commands. Use both asemicolon and a colon between the
commands. For example:

ARM:COUNL1;: TRIG:SOUR EXT

SCPI also allows several commands within the same subsystem to be linked with a
semicolon. For example:

ROUT:CLOS (@100);:ROUT:CLOS? (@100)
- Or -

ROUT:CLOS (@100);CLOS? (@100)

SCPI Command Reference

This section describes the Standard Commands for Programmabl e Instruments
(SCPI) reference commands for the E8480A module. Commands are listed
aphabetically by subsystem and also within each subsystem.

Chapter 4

Command Reference 51

ABORt

Subsystem Syntax

Comments

Example

The ABORt command stops a scan in progress when the scan is enabled viathe
interface, and the trigger source is either TRIGger:SOURce BUS or
TRIGger:SOURce HOLD.

ABORt

ABORt Actions: The ABORt command terminates the scan and invalidates the
current channel list. When the ABORt command is executed, the last channel closed
during scanning remains in the closed position.

Affect on Scan Complete Status Bit: Aborting a scan will not set the "scan
complete”" status bit.

Stopping Scan Enabled Vialnterface: When ascanisenabled viaaninterface, and
the trigger source is neither HOLD nor BUS, an interface clear command (CLEAR
7 or viClear () function in VISA) can be used to stop the scan. When the scanis
enabled viathe interface and TRIGger:SOURce BUS or HOLD is set, you can use
ABORt command to stop the scan.

Restarting a Scan: Usethe INITiate command to restart the scan.

Related Commands. ARM, INITiate:CONTinuous, [ROUTe:]SCAN, TRIGger

Stopping a Scan with ABORt

This example stops a continuous scan in progress.

TRIG:SOUR BUS I BUSistrigger source.
INIT:CONT ON I Set continuous scanning.
SCAN (@100:105) I Set channel list to be scanned.
INIT I Sart scan, close channel 100.
ABOR ! Abort scan in progress.

52 Command Reference

Chapter 4

ARM

Subsystem Syntax

The ARM subsystem sel ects the number of scanning cycles (1 to 32,767) for each
INITiate command.

ARM
:COUNt <number> MIN | MAX
:COUNt? [<MIN | MAX>]

ARM:COUNt

ARM:COUNt <number> MIN | MAX allows scanning cyclesto occur a multiple of
times (1 to 32,767) with one INITiate command when INITiate:CONTinuous OFF | O
isset. MIN sets 1 cycle and MAX sets 32,767 cycles.

Parameters

Name Type Range of Values Default Value
<number> numeric 1-32,767 | MIN | MAX 1

Comments Number of Scans: Use only values between 1 and 32767, MIN, or MAX for the
number of scanning cycles.
Related Commands. ABORt, INITiate[:IMMediate], INITiate:CONTinuous
*RST Condition: ARM:COUNt 1

Example Setting Ten Scanning Cycles

ARM:COUN 10 I Set 10 scanning cycles.
SCAN (@100:103) I Scan channels 100 to 103.
INIT I Sart scan, close channel 100.

Chapter 4

Command Reference 53

ARM:COUNLt?

Parameters

Comments

Example

ARM:COUNt? [<MIN | MAX>] returnsthe current number of scanning cycles set by
ARM:COUNL. The current number of scan cyclesis returned when MIN or MAX
parameter is not specified. With MIN or MAX as a parameter, "1" is returned for the
MIN parameter; or "32767" is returned for the MAX parameter regardless of the
ARM:COUNL value set.

Name Type Range of Values Default Value

<MIN | MAX> numeric MIN =1, MAX = 32,767 current cycles

Related Commands: INITiate[:IMMediate]

Querying Number of Scanning Cycles

ARM:COUN 10 I Set 10 scanning cycles per INIT
command.
ARM:COUN? I Query number of scanning cycles.

54 Command Reference

Chapter 4

DIAGnostic

The DIAGnostic subsystem is used to control the modul€e' s interrupt capability,
emergency protection capability, as well asthe timeinterval between the two
scanned channels. All these settings can also be queried with this subsystem.

Subsystem Syntax DIAGnostic
:EMERgency
:CLEar <card_number>
:STATus? <card_number>
‘TRIGger
:STATe <card_number>, <mode>
:STATe? <card_number>
(INTerrupt
[:LINE] <card_number>, <line_number>
[:LINE]? <card_number>
:TIMer <card_number>, <time_interval>
:TIMer? <card_number>
:SCAN
:DELay <card_number>, <time_interval>
:DELay? <card_number>
TEST
[[RELays]?
:SEEProm? <card_number>

DIAGnostic:EMERgency:CLEar

DIAGnostic:EMERgency:CLEar <card_number> command clears the emergency
status of the selected module if an external emergency trigger has ever occurred on
its "Emergency Reset" port when enabled. Use
DIAGnostic:EMERgency:TRIGger:STATe command to enable/disable the
"Emergency Reset" port. Use DIAGnostic:EMERgency:STATus? command to check
whether an external emergency trigger happened or not.

Parameters

Name Type Range of Values Default Value

<card_number> numeric 1-99 N/A

Comments ThisCommand Not Always Used: This command is not required if the external
emergency trigger is disabled by the DIAGnostic:EMERgency: TRIGger:STATe
command or no emergency trigger occurs on the "Emergency Reset" port.

Using ThisCommand: Once an external emergency trigger occurs, all relaysonthe
modul e are open and can not be operated any more. In such case, use
DIAGnostic:EMERgency:CLEar command to clear the current emergency state and
recover the operation on relays.

Related Commands. DIAGnostic:EMERgency:STATus?,
DIAGnostic:EMERgency: TRIGger:STATe

Chapter 4 Command Reference 55

Example

Clearing the Emergency State Occurred on Module #1
DIAG:EMER:CLEar 1 I Clear emergency state of module #1.

DIAGnostic:EMERgency:STATus?

Parameters

Comments

Example

DIAGnostic:EMERgency:STATus? <card_number> command queries the
selected modul e to determine whether an external emergency trigger had occurred
on the "Emergency Reset" port while enabled. Return value of "1" indicates an
external emergency trigger occurs on the port. Otherwise, return value of "0".

Name Type Range of Values Default Value

<card_number> numeric 1-99 N/A

Related Commands: DIAGnostic:EMERgency:CLEar,
DIAGnhostic:EMERgency:TRIGger:STATe?

Querying the Emergency State Happened or Not

DIAG:EMER:CLEar 1 I Clear the emergency status ever
occurred on module #1
DIAG:EMER:STAT? 1 1"0" returned indicates that the

emergency status has been cleared.

DIAGnostic:EMERgency:TRIGger:STATe

Parameters

Comments

DIAGnostic:EMERgency:TRIGger:STATe <card_number>, <mode> enables or
disables the "Emergency Reset" port on the selected module to accept external
emergency trigger. The<mode> isset to"1" if the port isenabled or "0" if disabled.
By default, the "Emergency Reset" port is disabled at power-up.

Name Type Range of Values Default Value
<card_number> numeric 1-99 N/A
<mode> boolean ON|OFF|1]|0 OFF |0

Enabling " Emergency Reset" Port: When enabled, the "Emergency Reset" port
can accept aTTL low voltage or a+5V negative-going pulse to force the module to
open al channels. In such case, you can not operate the module any more unless
clearing the current emergency state by sending the DIAGnostic:EMERgency:CLEar
command or power-off the module.

Related Commands. DIAGnostic:EMERgency:CLEar,
DIAGnostic:EMERgency:STATus?, DIAGnostic:EMERgency:TRIGger:STATe?

*RST Condition: The "Emergency Reset" port is disabled.

56 Command Reference

Chapter 4

Example Enabling the" Emergency Reset" Port on Module #1

DIAG:EMER:TRIG:STAT 1,1 I Enable module #1 to accept emergency

trigger.

DIAGnostic:EMERgency:TRIGger:STATe?

DIAGnostic:EMERgency:TRIGger:STATe? <card_number> queries the present
setting for the "Emergency Reset" port of the selected module. The command returns
"1" if the port is enabled or "0" if disabled.

Parameters

Name Type Range of Values Default Value

<card_number> numeric 1-99 N/A

Comments Related /Commands. DIAGnostic:EMERgency:TRIGger:STATe,
DIAGnhostic:EMERgency:STATus?

Example Queryingthe" Emergency Reset" Port State (Enable/Disable)

DIAG:EMER:TRIG:STAT 1,1 I Enable module #1 to accept emergency
trigger.
I Return of "1" indicates the emergency

function of module #1 is enabled.

DIAG:EMER:TRIG:STAT? 1

DIAGnostic:INTerrupt[:LINe]

DIAGnostic:INTerrupt[:LINe] <card_number>, <line_number> sets the interrupt
line of the specified module. The <card_number> specifieswhich E8480A in a
multiple-modul e switchbox, is being referred to. The <line_number> can be 1
through 7 corresponding to VXI backplane interrupt lines 1 through 7. The default
valueis 1 (lowest interrupt level).

NOTE Changing theinterrupt priority level is not recommended. DO NOT change it
unless specially instructed to do so.

Parameters
Name Type Range of Values Default Value
<card_number> numeric 1-99 N/A
<line_number> numeric 0-7 1

Comments Disable Interrupt: Setting <line_number> = 0 will disable the modul€' s interrupt
capability.

Select an Interrupt Line: The line_number can be 1 through 7 corresponding to
V X1 backplaneinterrupt lines 1-7. Only one value can be set at onetime. The default
valueis 1 (lowest interrupt level).

Related Commands: DIAGnostic:INTerrupt[:LINe]?

Chapter 4 Command Reference 57

Example

Settingthe Modul€e' sInterrupt Lineto 1

DIAGIINT:LIN 1, 1 I Set the interrupt line of Module #1 to
line 1.

DIAGnostic:INTerrupt[:LINe]?

Parameters

Comments

Example

DIAGnostic:INTerrupt[:LINe]? <card_number> queries the module’ sV XI
backplane interrupt line and the returned valueisoneof 1, 2, 3, 4, 5, 6, 7 which
correspondsto the modul € sinterrupt lines 1-7. Thereturned val ue being O indicates
that the modul €’ sinterrupt isdisabled. The card_number specifieswhich E8480A in
amultiple-module switchbox is being referred to.

Name Type Range of Values Default Value

<card_number> numeric 1-99 N/A

Return value of "0" indicates that the modul€e’ s interrupt is disabled. Return values
of 1-7 correspond to V XI backplane interrupt lines 1 through 7.

When power-on or reset the module, the default interrupt lineis 1.

Querying the Module' sInterrupt Line

DIAGIINT:LIN 1, 1 I Set the interrupt line of Module #1 to
line 1.
DIAG:INT:LIN? 1 I Query the modul€' sinterrupt line.

DIAGnostic:INTerrupt: TIMer

Parameters

Comments

NOTE

DIAGnostic:INTerrupt: TIMer <card_number>, <timer> is used to set the amount
of time (in second) the module will wait after arelay close or open commandisgiven
before sending an interrupt and clearing the "busy" bit. The card_number parameter
specifies which E8480A in a multiple-module switchbox is to be set.

Name Type Range of Values Default Value
<card_number> numeric 1-99 N/A
<timer> numeric 0.000001 - 0.064 seconds 0.015 second

We highly recommend you set the time to 15 ms for the ES480A relay.

*RST does not change the selected time.

Setting the interrupt timer too small can cause system problems. We DO NOT
recommend to change it unless specially instructed to do so.

58 Command Reference

Chapter 4

Example

Setting Interrupt Timer of Module#1to 15 ms
DIAG:INT:TIM 1, 0.015 I Set Module 1 Interrupt timer to 15 ms.

DIAGnostic:INTerrupt: TIMer?

Example

DIAGnostic:INTerrupt:TIMer? <card_number> queries the specified module and
returns the interrupt delay time set by the DIAG:INT:TIM command.
Querying the Interrupt Timer Set for Module #1

DIAG:INT:TIM? 1 I Query the interrupt timer set for the
Module #1.

DIAGnostic:SCAN:DELay

Parameters

Example

DIAGnostic:SCAN:DELay <card _number>, <delay timer> sets the amount of
extratime (in second) the modulewill wait between opening one channel and closing
the next in a scan operation. The card_number parameter specifies which E8480A
in a multiple-module switchbox isto be set.

Name Type Range of Values Default Value
<card_number> numeric 1-99 N/A
<delay_timer> numeric 0 - 6.5535 seconds 0 second

Setting the Delay Time for Scanning Operation

DIAG:SCAN:DEL 1, 0.01 I Module #1 will wait 10 ms between
opening one channel and closing the
next specified in the scan list.

DIAGnostic:SCAN:DELay?

Example

DIAGnostic:SCAN:DELay? <card_number> queries the specified module and
returns the delay time (in second) set by the DIAG:SCAN:DEL command.
Querying the Scan Delay Time Set for Module #1

DIAG:SCAN:DEL? 1 I Query the scan delay time setting on the
Module #1.

Chapter 4

Command Reference 59

DIAGnostic: TEST[:RELays]?

DIAGnostic: TEST[:RELays]? causes the instrument to perform aself test which
includes writing to and reading from al relay registers and verifying the correct
values. A failure may indicate a potential hardware problem.

Comments Returned Value: Returns 0 if all tests passed; otherwise the card fails.

Error Codes: If the card fails, the returned valueisin the form
100* card number + error code. Error codes are;

1 = Internd driver error;

2 =VXI bustime out;

3= Card ID register incorrect;

5 = Card data register incorrect;

10 = Card did not interrupt;

11 = Card busy time incorrect;

40 = Relay register read and written data don’t match.

WARNING Disconnect any connections to the module when performing this
function.

Example Performing Diagnostic Test to Check Error(s)

DIAG.TEST? ! Returned value can be either 0 or other
value. "0" indicates that the system has
passed the self test otherwise the system
hasan error.

DIAGnostic: TEST:SEEProm?

DIAGnostic: TEST:SEEProm? <card_number> checkstheintegrity (checksum) of
the serial EEPROM on the module. Return value of "0" if no error. Otherwise, return

value of "-1".
Parameters
Name Type Range of Values Default value
<card_number> numeric 1-99 N/A

Comments Related Commands; SYST:CTYPE? <card_number>

Example Checking EEPROM Checksum on Module #1
DIAG:TEST:SEEProm? 1 I Return"0" if no error.

60 Command Reference Chapter 4

DISPlay

Subsystem Syntax

The DISPlay subsystem monitors the channel state of the selected modulein a
switchbox. This subsystem operates with an E1406A command module when a
display terminal is connected. With an RS-232 terminal connected to the E1406A
command modul€’ s RS-232 port, these commands control the display on the
terminal, and would in most cases be typed directly from the terminal keyboard. Itis
possible however, to send these commands over the GPIB interface, and control the
terminal’ s display. In this case, care must be taken that the instrument receiving the
DISPlay command is the same one that is currently selected on the terminal;
otherwise, the GPIB command will have no visible affect.

DISPlay
:MON:itor
:CARD <number> | AUTO
:CARD?
[STATe] <mode>
[[STATe]?

DISPlay:MONitor:CARD

Parameters

Comments

Example

DISPlay:MONitor:CARD <number> | AUTO selects the module in a switchbox to
be monitored when the monitor mode is enabled. Use the DISPlay:MONitor:STATe
command to enable or disable the monitor mode.

Name Type Range of Values Default Value

<number> | AUTO numeric 1-99]| AUTO AUTO

Selecting a Specific Moduleto be Monitored: Use the DISPlay:MONitor:CARD
command to send the card number for the switchbox to be monitored.

Selecting the Present M odule to be Monitored: Use the DISPlay:MONitor: CARD
AUTO command to select the last module addressed by a switching command (for
example, [ROUTe:]CLOSe).

*RST Conditions: DISPlay:MONitor:CARD AUTO

Selecting Module #2 in a Switchbox for Monitoring

DISPlay:MONitor:CARD 2 I Select module #2 in a switchbox to be
monitored.

DISPlay:MONitor:CARD?

DISPlay:MONitor: CARD? queries the setting of the DISPlay:MONitor:CARD
command and returns the module in a switchbox being monitored.

Chapter 4

Command Reference 61

DISPlay:MONitor[:STATe]

DISPlay:MONitor[:STATe] <mode> turns the monitor mode ON or OFF. When
monitor mode is on, the RS-232 terminal display presents an array of values
indicating the closed channels on the module. The display is dynamically updated
each time a channel is opened or closed.

Parameters

Name Type Range of Values Default Value

<mode> boolean ON|OFF|1]|0 OFF |0

Comments Monitoring Switchbox Channels: DISPlay:MONitor[:STATe] ON or
DISPlay:MONitor[:STATe] 1 turns the monitor mode ON to show the channd state
of the selected module. DISPlay:MONitor[:STATe] OFF or
DISPlay:MONitor[:STATe] 0 turns the monitor mode OFF.

NOTE Typing in another command on the RS-232 terminal will cause the
DISPlay:MONitor[:STATe] to automatically be set to OFF (0). Use of the OFF
parameter is useful only if the command is issued over the GPIB interface.

Sdlecting the Module to be Monitored: Use the DISPlay:MONitor:CARD
<number> | AUTO command to select the module.

Monitor Modefor an E8480A: When monitoring mode isturned ON, the states of
al 40 channels are displayed at the bottom of the terminal in three groups (channels
0-15, channels 16-31, and channels 32-39). Following each channel range numbers
are the channel states within two brackets in the order of the channels order. "1"
represents the corresponding channel is closed and "0" represents the corresponding
channel is open. For example, the display:

Chan: 0-15 (0110000000000001) 16-31 (1000000000000001)
32-39 (10000000)

The example indicates that channels 01, 02, 15, 16, 31 and 32 are closed.

*RST Condition: DISPlay:MONitor[:STATe] OFF | 0.

Example Enabling the Monitor Mode for Module #2

DISP:MON:CARD 2 I Select module #2 in a switchbox to be
monitored.
DISP:MON ON ! Turn on monitor mode.

DISPlay:MONitor[:STATe]?

DISPlay:MONitor[:STATe]? queries the monitor mode state whether it is set to ON
or OFF.

62 Command Reference Chapter 4

INITiate

Subsystem Syntax

The INITiate command subsystem sel ects continuous scanning cycles and starts the
scanning cycle.

INITiate
:CONTinuous <mode>
:CONTinuous?
[:IMMediate]

INITiate: CONTinuous

Parameters

Comments

Example

INITiate:CONTinuous <mode> enables or disables continuous scanning cyclesfor
the switchbox.

Name Type Range of Values Default Value

<mode> boolean ON|OFF|1]|0 OFF |0

Continuous Scanning Oper ation: Continuous scanning is enabled with the
INITiate:CONTinuous ON or INITiate:CONTinuous 1 command. Sending the
INITiate:IMMediate command closesthefirst channel inthe channel list. Eachtrigger
from the trigger source specified by the TRIGger:SOURce command advances the
scan through the channel list. A trigger at the end of the channel list closes the first
channel in the channel list and the scan cycle repeats.

Noncontinuous Scanning Oper ation: Noncontinuous scanning is enabled with the
INITiate:CONTinuous OFF or INITiate:CONTinuous 0 command. Sending the
INITiate:IMMediate command closesthefirst channel inthe channel list. Eachtrigger
from the trigger source specified by the TRIGger:SOURce command advances the
scan through the channdl list. A trigger at the end of the channel list opens the last
channel in thelist and the scanning cycle stops.

Stopping Continuous Scan: Refer to the ABORt command on page 52.

Related Commands. ABORt, ARM:COUN, INITiate[:IMMediate],
TRIGger:SOURce.

*RST Condition: INITiate:CONTinuous OFF | 0

Enabling Continuous Scanning

This example enables continuous scanning of channels 100 through 105 of a
single-module switchbox. Since TRIGger:SOURce IMMediate (default) isset, usean
interface clear command (such as CLEAR 7 or viClear() in VISA) to stop the scan.

INIT:CONT ON I Enable continuous scanning.
SCAN (@100:105) I Set channel list to be scanned.
INIT I Start scan, close channel 100.

Chapter 4

Command Reference 63

INITiate:CONTinuous?

Example

INITiate:CONTinuous? queries the scanning state. With continuous scanning
enabled, the command returns 1" (ON). With continuous scanning disabled, the
command returns "0" (OFF).

Querying Continuous Scanning

INIT:CONT ON I Enable continuous scanning.
INIT:CONT? I Query continuous scanning state.
It returns"1" (ON).

INITiate[:IMMediate]

Comments

Example

INITiate[:IMMediate] starts the scanning process and closes the first channel in the
channel list. Successive triggers from the source specified by the TRIGger:SOURce
command advances the scan through the channel list.

Starting the Scanning Cycle: The INITiate:IMMediate command starts scanning by
closing thefirst channel in the channel list. Each trigger received advances the scan
to the next channdl in the channel list. Aninvalid channel list generates an error (see
the [ROUTe:]SCAN command on page 71).

Stopping Scanning Cycles: Refer to the ABORt command.

Related Commands: ABORt, ARM:COUN, INITiate:CONTinuous, TRIGger,
TRIGger:SOURce

Enabling a Single Scan

This example enables asingle scan of channels 100 through 105 of a single-module
switchbox. The trigger source to advance the scan isimmediate (internal) triggering
set with TRIGger:SOURce:IMMediate (default).

SCAN (@100:105) I Scan channels 00-05.
INIT I Sart scan, close channel 00 (use
immediate triggering).

64 Command Reference

Chapter 4

OUTPut

Subsystem Syntax

The OUTPut command subsystem selects the source of the output trigger generated
when achannel isclosed during ascan. The selected output can be enabled, disabled,
or queried. The three available outputs are ECLTrg, TTLTrg trigger buses, and the
"Trig Out" port on the command modul€’ s front panel (e.g. E1406A).

OUTPut

:ECLTrgn (:ECLTrgO or :ECLTrgl)
[(STATe] <mode>
[[STATe]?

[:EXTernal]
[STATe] <mode>
[[STATe]?

:TTLTrgn (:TTLTrgO through :TTLTrg7)
[STATe] <mode>
[}STATe]?

OUTPut:ECLTrgn[:STATe]

Parameters

Comments

OUTPuUt:ECLTrgn[:STATe] <mode> selects and enables which ECL Trigger bus
line (0 and 1) will output atrigger when a channel is closed during ascan. Thisis
aso used to disable a selected ECL Trigger busline. "n" specifiesthe ECL Trigger
busline (0 or 1) and <mode> enables (ON or 1) or disables (OFF or 0) the specified
ECL Trigger busline.

Name Type Range of Values Default Value
n numeric Oorl N/A
<mode> boolean 0]1]|OFF|ON OFF |0

Enabling ECL Trigger Bus. When enabled, atrigger pulse is output from the
selected ECL Trigger busline (0 or 1) each time achannel is closed during a scan.
The output is a negative going pulse.

ECL Trigger BusLine Shared by Switchboxes: Only one switchbox
configuration can use the selected trigger at atime. When enabled, the selected ECL
Trigger busline (0 or 1) is pulsed by the switchbox each time a scanned channel is
closed. To disable the output for a specific switchbox, send the OUTPut:ECLTrgn
OFF or 0 command for that switchbox.

OneOutput Selected at aTime: Only one output (ECLTrgn, TTLTrgn or EXTernal)
can be enabled at one time. Enabling a different output source will automatically
disable the active output. For example, if ECLTrg0 isthe active output and ECLTrg1
is enabled, ECLTrg0 will become disabled and ECLTrg1 will become the active
output.

Chapter 4

Command Reference 65

Example

Related Commands. [ROUTe:]SCAN, TRIGger:SOURce,
OUTPUt:ECLTrgn[:STATe]?

*RST Condition: OUTPut:ECLTrgn[:STATe] OFF (disabled)

Enabling ECL Trigger BusLineO

OUTP:ECLTO:STAT 1 I Enable ECL Trigger busline 0
to output pulse after each scanned
channel is closed.

OUTPut:ECLTrgn[:STATe]?

Example

OUTPuUt:ECLTrgn[:STATe]? queriesthe state of the specified ECL Trigger busline.
The command returns " 1" if the specified ECL Trg buslineisenabled or "0" if itis
disabled.

Querying ECL Trigger Bus Enable State

This example enables ECL Trigger bus line 1 and queries the enable state. The
OUTPut:ECLTrgn? command returns"1" since the line is enabled.

OUTP:ECLTL1:STAT 1 ! Enable ECL Trigger busline 1.
OUTP:ECLT1? I Query bus enable state.

OUTPut[:EXTernal][:STATe]

Parameters

Comments

OUTPuUt[:EXTernal][:STATe] <mode> enables or disablesthe"Trig Out" port on
the E1406A command module to output atrigger when achannedl is closed during a
scan.

® OUTPut[:EXTernal]STATe] ON | 1 enablesthe port.
® OUTPut[:EXTernal][:STATe] OFF | 0 disablesthe port.

Name Type Range of Values Default Value

<mode> boolean ON|OFF|1]0 OFF |0

Enabling " Trig Out" Port: When enabled, a pulseis output from the "Trig Out"
port each time achannel is closed during scanning. If disabled, a pulseis not output
from the port after channel closures.

Output Pulse: The pulseisa+5V negative-going pulse.

"Trig Out" Port Shared by Switchboxes. Only one switchbox configuration can
use the selected trigger at atime. When enabled, the " Trig Out" port may is pulsed
by the switchbox each time a scanned channdl is closed. To disable the output for a
specific switchbox, send the OUTP OFF or 0 command for that switchbox.

66

Command Reference

Chapter 4

Example

OneOutput Selected at a Time: Only oneoutput (ECLTrgn, TTLTrgn or EXTernal)
can be enabled at one time. Enabling a different output source will automatically
disable the active output. For example, if TTLTrgl isthe active output and TTLTrg4
isenabled, TTLTrg1 will become disabled and TTLTrg4 will become the active
output.

Related Commands. [ROUTe:]SCAN, TRIGger:SOURce
*RST Condition: OUTPut[:EXTernal][:STATe] OFF (port disabled)

Enabling " Trig Out" Port

OUTP ON I Enable "Trig Out" port to output pulse
after each scanned channel is closed.

OUTPut[:EXTernal][:STATe]?

Example

OUTPut[:EXTernal][:STATe]? queriesthe present state of the" Trig Out" port onthe
E1406A command module. The command returns"1" if the port isenabled or "0" if
disabled.

Querying " Trig Out" Port State
OUTP ON I Enable"Trig Out" port for pulse output.
OuTP? I Query port enable state.

OUTPut: TTLTrgn[:STATe]

Parameters

Comments

OUTPuUt:TTLTrgn[:STATe] <mode> selects and enables which TTL Trigger bus
line (0 to 7) will output atrigger when a channel is closed during a scan. This
command is also used to disable aselected TTL Trigger busline. "n" specifies the
TTL Trigger busline (0 to 7) and <mode> enables (ON or 1) or disables (OFF or 0)
the specified TTL Trigger busline.

Name Type Range of Values Default Value
n numeric Oto7 N/A
<mode> boolean ON|OFF|1]0 OFF |0

Enabling TTL Trigger Bus: When enabled, apulseisoutput fromtheselected TTL
Trigger busline (0to 7) after each channel is closed during ascan. If disabled, apulse
is not output from the selected TTL Trigger bus line after channel closures. The
output is a hegative-going pulse.

Chapter 4

Command Reference 67

Example

TTL Trigger BusLine Shared by Switchboxes: Only one switchbox configuration
can use the selected trigger at atime. When enabled, the selected TTL Trigger bus
line (0 to 7) ispulsed by the switchbox each time a scanned channel is closed. To
disable the output for a specific switchbox, send the OUTPut: TTLTrgn OFF or 0
command for that switchbox.

OneOutput Selected at aTime: Only one output (ECLTrgn, TTLTrgn or EXTernal)
can be enabled at one time. Enabling a different output source will automatically
disable the active output. For example, if TTLTrgl isthe active output and TTLTrg4
isenabled, TTLTrg1 will become disabled and TTLTrg4 will become the active
output.

Related Commands. [ROUTe:]SCAN, TRIGger:SOURce,
OUTPUt:TTLTrgn[:STATe]?

*RST Condition: OUTPut:TTLTrgn[:STATe] OFF (disabled)

Enabling TTL Trigger BusLine?7

OUTP:TTLT7:STAT 1 ! Enable TTL Trigger busline 7 to output
pulse after each scanned channel is
closed.

OUTPuUt: TTLTrgn[:STATe]?

Example

OUTPut:TTLTrgn[:STATe]? queriesthe present state of the specified TTL Trigger
busline. The command returns" 1" if the specified TTLTrg buslineisenabled or "0"
if disabled.

Querying TTL Trigger Bus Enable State

This example enables TTL Trigger busline 7 and queries the enable state. The
OUTPut:TTLTrgn? command returns "1" since the port is enabled.

OUTP:TTLT7:STAT 1 I Enable TTL Trigger busline 7.
OUTP:TTLT7? ! Query bus enable state.

68 Command Reference

Chapter 4

[ROUTe:]

The [ROUTe:] command subsystem controls switching and scanning operations for

the E8480A modulesin a switchbox.

Subsystem Syntax [ROUTe]

CLOSe <channel_list>

CLOSe? <channel_list>

OPEN <channel_list>

OPEN? <channel_list>

SCAN <channel_list>

[ROUTe:]CLOSe

[ROUTe:]CLOSe <channel_list> closesthe channels specified in the channel_list.
Channel_list isin the form (@ccnn), where cc = card number (01-99) and nn =
channel number (00-39).

Parameters

Name

Type

Range of Values

Items

<channel_list>

numeric
numeric

1-99
00 - 39

card (cc)
channel (nn)

Comments Closing Channels: To close:

-- asingle channel, use CLOS (@ccnn);

-- multiple channels, use CLOS (@ccnn,ccnn,...);
-- seguential channels, use CLOS (@ccnn:ccnn);

-- groups of sequential channels, use CLOS (@ccnn:ccnn;ccnn:ccnn);
-- or any combination of the above.

Closure order for multiple channels with a single command is not guaranteed. Use
sequential CL OSe commands when needed.

NOTE Channel numbersin the <channel_list> can be in any random order.

Related Commands. [ROUTe:JOPEN, [ROUTe:]CLOSe?

*RST Condition: All channels are open.

Example Closing Multiple Channels

This example closes channels 100 and 213 of atwo-module switchbox.

CLOS (@100,213)

! Close channels 100 and 213.

Chapter 4

Command Reference 69

[ROUTe:]CLOSe?

Comments

NOTE

Example

[ROUTe:]OPEN

[ROUTe:]CLOSe? <channel_list> returnsthe current state of the channel(s)
gueried. Channel_list isin the form (@ccnn). The command returns 1" if the
channel isclosed or returns"0" if the channel isopen. If alist of channelsis queried,
acommadelineated list of 0 or 1 valuesisreturned in the same order of the channel
list.

Query is Software Readback: The ROUTe:CLOSe? command returns the current
software state of the channel(s) specified. It does not account for relay hardware
failures.

Channel_list Definition: See “[ROUTe:]CLOSe” on page 69 for the channel_list
definition.

A maximum of 128 channels can be queried at one time. Therefore, if you want to
guery more than 128 channels, you must enter the query data in two separate
commands.

Querying Channédl Closure State

This example closes channels 100 and 213 of atwo-module switchbox and queries
channel closure. Since the channels are programmed to be closed, "1,1" is returned.

CLOS (@100,213) I Close channels 100 and 213.

CLOS? (@100,213) I Query channels 100 and 213 closure
state, returned value "1,1" indicates
that both channels are closed.

Parameters

Comments

[ROUTe:JOPEN <channel_list> opens the channels specified in the channel_list.
Channel_list isin the form (@ccnn), where cc = card number (01-99) and nn =
channel number (00-39).

Name Type Range of Values Items

numeric 1-99 card (cc)

<channel_list> numeric 00 -39 channel (nn)

Opening Channels: To open:

-- asingle channel, use OPEN (@ccnn);

-- multiple channels, use OPEN (@ccnn,ccnn,...);

-- sequential channels, use OPEN (@ccnn:ccnn);

-- groups of sequential channels, use OPEN (@ccnn:ccnn;ccnn:ccnn);
-- or any combination of the above.

Opening order for multiple channels with a single command is not guaranteed.

70 Command Reference

Chapter 4

Related Commands. [ROUTe:]CLOSe, [ROUTe:]OPEN?

*RST Condition: All channels are open.

Example Opening Channels

This example opens channels 100 and 213 of a two-module switchbox.

OPEN (@100, 213) 10pen channels 100 and 213.

[ROUTe:]OPEN?

[ROUTe:]OPEN? <channel_list> returns the current state of the channel(s)
queried. The channel_list isin the form (@ccnn). The command returns " 1" if
channel(s) are open or returns "0" if channel(s) are closed. If alist of channelsis
queried, acommadelineated list of 0 or 1 valuesisreturned in the same order of the
channel list.

Comments Query is Softwar e Readback: The ROUTe:OPEN? command returns the current
software state of the channel(s) specified. It does not account for relay hardware
failures.

Channel_list Definition: See the [ROUTe]OPEN command on page 70 for the
channel_list definition.

NOTE A maximum of 128 channels can be queried at one time. Therefore, if you want to
guery more than 128 channels, you must enter the query data in two separate
commands.

Example Querying Channel Open State

This example opens channels 100 and 213 of atwo-module switchbox and queries
channel 213 state. Since channel 213 is programmed to be open, "1" is returned.

OPEN (@100,213) I Open channels 100 and 213.
OPEN? (@213) I Query channel 213 state.

[ROUTe:]SCAN

[ROUTe:]SCAN <channel_list> defines the channels to be scanned. Channel_list
isin the form (@ccnn), where cc = card number (01-99) and nn = channel number

(00-39).
Parameters
Name Type Range of Values Items
<channel list> numeric 1-99 card (cc)
- numeric 00 - 39 channel (nn)

Chapter 4 Command Reference 71

Comments

Example

Defining Scan List: When ROUTe:SCAN isexecuted, the channel list ischecked for
valid card and channel numbers. An error is generated for an invalid channel list.

Scanning Channels. To scan:

-- asingle channel, use SCAN (@ccnn);

-- multiple channels, use SCAN (@ccnn,ccnn,...);

-- sequential channels, use SCAN (@ccnn:ccnn);

-- groups of sequential channels, use SCAN (@ccnn:ccnn;ccnn:ccnn);
-- or any combination of the above.

Scanning Operation: When avalid channel list is defined, INITiate[:IMMediate]
begins the scan and closes the first channel in the channel_list. Successive triggers
from the source specified by TRIGger:SOURce advance the scan through the
channel list. At the end of the scan, the last trigger opens the last channel.

Stopping Scan: See the ABORt command on page 52.
Related Commands. TRIGger, TRIGger:SOURce

*RST Condition: All channels are open.

Scanning Channels Using External Triggers

This example uses external triggering (TRIG:SOUR EXT) to scan channels 100
through 109 of asingle-module switchbox. Thetrigger sourceto advancethescanis
theinput to the"Trig In" on the E1406A command module. When INIT is executed,
the scan is started and channel 00 is closed. Then, each trigger received at the " Trig
In" port advances the scan to the next channedl.

TRIG:SOUR EXT | Set trigger source to external.

SCAN (@100:109) I Set channel list to be scanned.

INIT I Sart scanning cycle and close channel
100.

(trigger externally) I Advance scan to next channel.

72 Command Reference

Chapter 4

STATuUS

Subsystem Syntax

The STATus subsystem reports the bit values of the Operation Status Register. It
also allows you to unmask the bits you want reported from the Standard Event
Register and to read the summary bits from the Status Byte Register.

STATus
:OPERation
:CONDition?
:ENABle <unmask>
:ENABIle?
[:EVENt]?
:PRESet

The STATus system contains four registers (that is, they residein a SCPI driver, not
in the hardware), two of which are under |EEE 488.2 control: the Standard Event
Status Register (*ESE?) and the Status Byte Register (*STB?). The operational status
bit (OPR), service request bit (RQS), standard event summary bit (ESB), message
available bit (MAV) and questionable data bit (QUE) in the Status Byte Register
(bits 7, 6, 5, 4 and 3 respectively) can be queried with the *STB? command. Use the
*ESE? command to query the <unmask> value for the Standard Event Register (the
bits you want logically OR’d into the summary bit). The registers are queried using
decimal weighted bit values. The decimal equivalents for bits 0 through 15 are
included in Figure 4-1 on page 74.

A numeric value of 256 executed in a STAT:OPER:ENABIle <unmask> command
alows only bit 8 to generate a summary bit. The decimal value for bit 8 is 256.

The decimal values are also used in the inverse manner to determine which bits are
set from the total value returned by an EVENt or CONDition query. The E8480A
module driver exploits only bit 8 of Operation Status Register. This bit is called the
scan complete bit which is set whenever a scan operation completes. Since
completion of ascan operation isan event intime, you will find that bit 8 will never
appear set when STAT:OPER:COND? is queried. However, you can find bit 8 set
with the STAT:OPER:EVEN? query command.

Chapter 4

Command Reference 73

Automatically Set ot{
Power On Conditions

Automatically Set by
Parser

Set by *OPC {
Related Commands
are *OPC? and *WAI

Scan Complete —

Operation Status Register

EREE[e ol e

°f

Output Queue

Standard Event Register
*ESR?

*ESE <unmask>
’7 *ESE?
<1>
<2>
<4>
<8>
<16>
<32>

<64> Summa
<128> o

Ev EN

Power On

User Request
Command Error
Execution Error
Device Dependent Error
Query Error

Request Control

— Operation Complete

STATus:OPERation:CONDition?
STATus:OPERation:EVENt?
STATus:OPERation:ENABle

<1>
<2>
<4>

<55 Sung;:ory
<16>
<32>
<64>
<128>
<256>
<512>
1 <1024>
— <2048>
— <4096>
— <8192>
—<16384>
—1<32768>

a% EN

"gR"

»~

\

NOTE:

QUE = Questionable Data

MAV = Message Available
ESB = Standard Event
RQS = Request Service
OPR = Operation Status
C = Condition Register

EV = Event Register

EN = Enable Register

SRQ = Interface Bus
Service Request

Status Byte Register

*STB?
SPOLL

*SRE <unmask>
’7 *SRE?

<1>
<2>
<4> "OR”

<16>
<32> System
Controller
<128>
Interface Bus
Stat E
otue N SRQ Line
SRQ
) SRQ Other
_SRQ Other
Instrument

unmask examples:

unmask
Register decimal
bit weight

"0R”
v
Operation Complete i e ESB

*ESE 61 unmasks standard event register bits O,
2, 3, 4 and 5 (*ESE 128 only unmasks bit 7).

*SRE 128 unmasks the OPR bit (operation) in
the status byte register. This is effective
only if the STAT:OPER:ENAB 256 command
is executed.

STAT:0PER:ENAB 256 unmasks the "Scan Complete”
bit.

/

Figure 4-1. E8480A Status System Register Diagram

74 Command Reference

Chapter 4

STATus:OPERation:CONDition?

STATus:OPERation:CONDition? returns the state of the Condition Register in the
Operation Status Group. The state represents conditions which are part of the
instrument’ s operation. The modul€e's driver does not set bit 8 in thisregister (see
STATus:OPERation[:EVENL]?).

STATus:OPERation:ENABIe

Parameters

Comments

Example

STATus:OPERation:ENABIle <unmask> sets an enable mask to alow events
recorded in the Event Register (Operation Status Group) to send asummary bit to
the Status Byte Register (bit 7). For the E8480A module, when bit 8 in the Operation
Status Register isset to "1" and that bit is enabled by the
STATus:OPERation:ENABIe 256 command, bit 7 in the Status Byte Register is set
to"1".

Name Type Range of Values Default Value

<unmask> numeric 0-65,535 N/A

Setting Bit 7 of the StatusByte Register: STATus:OPERation:ENABle 256 setsbit
7 of the Status Register to 1 after bit 8 of the Operation Status Register is set to 1.

Related Commands: [ROUTe:]SCAN

Enabling Operation Status Register Bit 8

STAT:OPER:ENAB 256 I Enable bit 8 of the Operation Satus
Register to be reported to bit 7
(OPR) in the Status Byte Register.

STATus:OPERation:ENABIe?

Comments

Example

STATus:OPERation:ENABIe? returns which bits in the Event Register (Operation
Status Group) are unmasked.

Output Format: Returns adecimal weighted value from 0 to 65,535 indicating
which bits are set to true.

Maximum Value Returned: The value returned is the value set by the
STAT:OPER:ENAB <unmask> command. However, the maximum decimal
weighted value used in thismoduleis 256 (bit 8 set to true).

Querying the Operation Status Enable Register

STAT:OPER:ENAB? I Query the Operation Status Enable
Register.

Chapter 4

Command Reference 75

STATus:OPERation[:EVENt]?

Comments

Example

STATus:PRESet

STATus:OPERation[:EVENTt]? returns which bits in the Event Register (Operation
Status Group) are set. The Event Register indicates when there has been a
time-related instrument event.

Setting Bit 8 of the Operation Status Register: Bit 8 (scan complete) isset to"1"
after a scanning cycle completes. Bit 8 returnsto "0" after sending the
STATus:OPERation[:EVENt]? command.

Returned Data after sendingthe STATus:OPERation[:EVENt]? Command: The
command returns "+256" if bit 8 of the Operation Status Register isset to "1". The
command returns "+0" if bit 8 of the Operation Status Register is set to "0".

Event Register Cleared: Reading the Event Register with the
STATus:OPERation:EVENt? command clearsit.

Aborting a Scan: Aborting a scan will leave bit 8 set to 0.

Related Commands: [ROUTe:]SCAN

Reading the Operation Status Register After a Scanning Cycle

STAT:OPER? I Return the bit values of the Operation
Satus Register. +256 shows hit 8is
set to 1; +0 shows bit 8isset to 0.

STATus:PRESet affectsonly the Enable Register by setting all Enable Register bits
to 0. It does not affect either the Status Byte Register or the Standard Event Status
Register. PRESet does not clear any of the Event Registers.

76 Command Reference

Chapter 4

SYSTem

The SYSTem subsystem returns the error numbers and error messages in the error
gueue of a switchbox. It can also return the types and descriptions of modulesin a
switchbox.

Subsystem Syntax SYSTem
:CDEScription? <card_number>
:CPON <card_number> | ALL
:CTYPe? <card_number>
:ERRor?
:VERSion?

SYSTem:CDEScription?

SYSTem:CDEScription? <card_number> returns the description of a selected
module in a switchbox.

Parameters

Name Type Range of Values Default Value

<card_number> numeric 1-99 N/A

Comments Module Description: The SYSTem:CDEScription? <card_number> command
returns:

"40-Channel High Power General Purpose Switch"

Example Readingthe Description of Module #1

SYST:CDES? 1 I Return the description of module #1.

Chapter 4 Command Reference 77

SYSTem:CPON

SYSTem:CPON <card_number> | ALL resets the selected module, or multiple
modul es to their power-on state.

Parameters

Name Type Range of Values Default Value

<card_number> numeric 1-99orALL N/A

Comments Module Power-on State: The power-on state of the moduleisall channels (relays)
open. Notethat SYSTem:CPON ALL and *RST opensall channels of all modulesin
aswitchbox, while SYSTem:CPON <number> opens the channelsin only the
module (card) specified in the command.

Example Setting Module#1 to its Power-on State

SYST:CPON 1 I Set module #1 to its power-on state (All
channels open).

SYSTem:CTYPe?

SYSTem:CTYPe? <card_number> returns the module type of a selected module

in a switchbox.
Parameters
Name Type Range of Values Default Value
<card_number> numeric 1-99 N/A

Comments Agilent E8480A Module Mode Number: Sending this command returns:
HEWLETT- PACKARD, E8480A, <10-di git nunber>, A 11. 01

where the <10-digit number> is the modul €' s serial number and A.11.01 isan
example of the modul e revision code number.

NOTE The <10-digit number> returns 0 (zero) if the checksum of the EEPROM on the
module has error. The checksum of EEPROM on the module is always checked each
time the SYST:CTYP? <number> command is executed. Refer to
DIAGnNostic: TEST: SEEProm? command on page 60 for details.

Related Commands: DIAG:TEST:SEEProm? <card_number>

Example Readingthe Model Number of Module #1
SYST.CTYP? 1 ! Return the model number of module #1.

78 Command Reference Chapter 4

SYSTem:ERRor?

Comments

Example

SYSTem:ERRor? returns the error numbers and corresponding error messagesin
the error queue of a switchbox. See Appendix C for alisting of the module error
numbers and messages.

Error Numbers/Messagesin the Error Queue: Each error generated by amodule
stores an error number and corresponding error message in the error queue of a
switchbox. The error message can be up to 255 characterslong, but typically ismuch
shorter.

Clearing the Error Queue: An error number/message is removed from the queue
each time the SYSTem:ERRor? command is sent. The errors are cleared first-in,
first-out. When the queue is empty, each following SYSTem:ERRor? command
returns: +0, "No error". To clear all error numbers/messagesin the queue, execute the
*CLS command.

Maximum Error NumbersMessagesin the Error Queue: The queue holds a
maximum of 30 error numbers/messages for each switchbox. If the queue overflows,
the last error number/message in the queueis replaced by: -350, "Too many errors".
The least recent (oldest) error numbers/messages remain in the queue and the most
recent are discarded.

Reading the Error Queue

SYST:ERR? I Query the error queue.

SYSTem:VERSion?

Comments

Example

SYSTem:VERSion? returns the version of the SCPI standard to which this
instrument complies.

SCPI Version: This command always returns a decimal value "1990.0", where
"1990" isthe year, and "0" isthe revision number within that year.

Reading SCPI Version
SYST:VERS? ! Read the version of the SCPI standard.

Chapter 4

Command Reference 79

TRIGger

The TRIGger command subsystem controls the triggering operation of the modules
in aswitchbox.

Subsystem Syntax TRIGger
[:IMMediate]
:SOURce <source>
:SOURce?

TRIGger[:IMMediate]

TRIGger[:IMMediate] causes atrigger event to occur when the defined trigger
sourceis TRIGger:SOURce BUS or TRIGger:SOURce HOLD. Thiscan be used to
trigger a suspended scan operation.

Comments Executing the TRIGger[:IMMediate] Command: A channel list must be defined
with[ROUTe:]SCAN <channel_list> and an INITiate[:IMMediate] command must be
executed before TRIGger[:IMMediate] will execute.

BUS or HOLD Sour ce Remains: If selected, the TRIGger:SOURce BUS or
TRIGger:SOURce HOLD commands remain in effect after triggering a switchbox
with the TRIGger[:IMMediate] command.

Related Commands: INITiate, [ROUTe:]SCAN, TRIGger:SOURce

Example Advancing Scan Using TRIGger Command

This example uses the TRIGger command to advance the scan of a single-module
switchbox from channel 100 through 103. Since TRIGger:SOURce HOLD is set, the
scan is advanced one channel each time TRIGger is executed.

TRIG:SOUR HOLD I Set trigger sourceto HOLD.

SCAN (@100:103) I Define channel list to be scanned.

INIT I Start scanning cycle, close channel 100.
loop statement I Sart count loop.

TRIG I Advance scan to next channel.
increment loop I Increment loop count.

80 Command Reference Chapter 4

TRIGger:SOURce

Parameters

Comments

TRIGger:SOURce <source> specifiesthetrigger sourceto advancethechannel list
during scanning.

Name Type Parameter Description
BUS discrete *TRG or GET command
ECLTrgn numeric ECL Trigger bus line 0 - 1
EXTernal discrete "Trig In" port
HOLD discrete Hold Triggering
IMMediate discrete Immediate Triggering
TTLTrgn numeric TTL Trigger bus line 0 - 7

Enabling the Trigger Source: The TRIGger:SOURce command only selects the
trigger source. The INITiate[:IMMediate] command enables the trigger source. The
trigger source must be selected with TRIGger:SOURce command before executing
the INIT command.

Using the TRIGger Command: Y ou can use TRIGger[:IMMediate] to advance the
scan when TRIGger:SOURce BUS or TRIGger:SOURce HOLD is selected.

Using Bus Triggers: To trigger the switchbox with TRIGger:SOURce BUS
selected, use the IEEE 488.2 common command *TRG or the GPIB Group Execute
Trigger (GET) command.

Using TTL or ECL Trigger BusInputs: Thesetriggersare from the VX| backplane
trigger lines ECL[0,1] and TTL[0-7]. These may be used to trigger the "SWITCH"
driver from other VX1 instruments.

Using External Trigger Inputs: With TRIGger:SOURce EXTernal selected, only
one switchbox at atime can use the external trigger input at the E1406A "Trig In"
port. The trigger input is assigned to the first switchbox requesting the external
trigger source (with a TRIGger:SOURce EXTernal command).

OneTrigger Input Selected at a Time: Only oneinput (ECLTrg0 or 1; TTLTrgO, 1,
2,3,4,5,60r7;0or EXTernal) can be sel ected at onetime. Enabling adifferent trigger
source will automatically disable the active input. For example, if TTLTrgl isthe
activeinput, and TTLTrg4 isenabled, TTLTrgl will become disabled and TTLTrg4
will become the active input.

"Trig Out" Port Shared by Switchboxes: Seethe“OUTPut” on page 65 for more
information.

Assigning EXTernal, TTLTrgn, and ECLTrgn Trigger Inputs: After using
TRIGger:SOURce EXT|TTLTn|ECLTNn, the selected trigger source remains assigned
to the "SWITCH" driver until it is relinquished through use of the

TRIG:SOUR BUS|HOLD command. While the trigger isin use by the "SWITCH"
driver, no other drivers operating on the E1406 command module will have access
to that particular trigger source.

Chapter 4

Command Reference 81

Related Commands. ABORt, [ROUTe:]SCAN, OUTPut

*RST Condition: TRIGger:SOURce IMMediate

Example Scanning Using External Triggers

This example uses external triggering (TRIG:SOUR EXT) to scan channels 00
through 03 of a single-module switchbox. The trigger source to advance the scanis
theinput to the"Trig In" on the E1406A command module. When INIT is executed,
the scan is started and channel 00 is closed. Then, each trigger received at the " Trig
In" port advances the scan to the next channedl.

TRIG:SOUR EXT | Set trigger source to external.
SCAN (@100:103) I Set channel list to be scanned.
INIT I Start scan, close channel 100.
(trigger externally) I Advance channel list to next channel.

Example Scanning Using BusTriggers

This example uses bus triggering (TRIG:SOUR BUS) to scan channels 100 through
103 of a single-module switchbox. The trigger source to advance the scan isthe
*TRG command (as set with TRIGger:SOURce BUS). When INIT is executed, the
scan is started and channel 00 is closed. Then, each *TRG command advances the
scan to the next channel.

TRIG:SOUR BUS | Set trigger sourceto BUS.

SCAN (@100:103) I Set channel list to be scanned.

INIT I Start scan, close channel 100.

loop statement I Loop to scan all channels.

*TRG I Advance channel list to next channel.
Increment loop I Increment loop count.

TRIGger:SOURce?

TRIGger:SOURce? returnsthe current trigger source for the switchbox. Command
returns: BUS, EXT, HOLD, IMM, ECLTO-1, or TTLTO-7 for sources BUS, EXTernal,
HOLD, IMMediate, ECLTrgn, or TTLTrgn, respectively.

Example Queryingthe Trigger Source

This example sets external triggering and queries the trigger source. Since external
triggering is set, TRIG:SOUR? returns "EXT".

TRIG:SOUR EXT | Set external trigger source.
TRIG:SOUR? I Query trigger source.

82 Command Reference Chapter 4

SCPI Command Quick Reference

The following table summarizes the SCPI commands for the E8480A Module.

Command Description

ABORt Abort a scan in progress.

ARM :COUNt <number> | MIN | MAX Multiple scans per INIT command.
:COUNTt? [MIN|MAX] Query number of scans.

DIAGnostic | :EMERgency:CLEar <card_num> Clear the emergency state occurred on the specified module.
:EMERgency:STATus? <card_num> Query to see whether an emergency trigger occurs or not.
:EMERgency:TRIGger:STATe <card_num>,<mode> Enable/disable the "Emergency Reset" port.
:EMERgency:TRIGger:STATe? <card_num>,<mode> Query enable/disable setting for the "Emergency Reset" port.
!INTerrupt[:LINe] <card_num>,<line_num> Set an interrupt line for the specified module.
{INTerrupt[:LINe]? <card_num> Query the interrupt line of the specified module.
{INTerrupt:TIMer <card_num>,<time> Set wait time after an open or close before interrupting.
[INTerrupt: TIMer? <card_num> Query the interrupt timer.

:SCAN:DELay <card_num>,<time> Set additional scan delay time.

:SCAN:DELay? <card_num> Query the scan delay time.

‘TEST[:RELays]? Do diagnostic to find the specific error(s).
:TEST:-EEPRom? <card_num> Check the checksum of EEPROM on the specified module.

DISPlay :MONitor:CARD <card_num> | AUTO Select a module in a switchbox to be monitored.
:MONitor:CARD? Query which module is set by above command.
:MONitor[:STATe] <mode> Set the monitor state on or off.

:MONitor[:STATe]? Query the monitor state setting.

INITiate :CONTinuous ON | OFF Enable/disable continuous scanning.
:CONTinuous? Query continuous scan state.
[:IMMediate] Start a scanning cycle.

OUTPut :ECLTrgn[:STATe] ON|OFF|1]|0 Enable/disable the specified ECL trigger line pulse.
:ECLTrgn[:STATe]? Query the specified ECL trigger line state.
[:EXTernal][:STATe] ON|OFF|1]0 Enable/disable the "Trig Out" port on the command module.
[:EXTernal][:STATe]? Query the "Trig Out" port enable state.

‘TTLTrgn[:STATe] ON |OFF |1 |0 Enable/disable the specified TTL trigger line pulse.

‘TTLTrgn[:STATe]? Query the specified TTL trigger line state.
[ROUTe:] CLOSe <channel _list> Close channel(s).

CLOSe? <channel _list> Query channel(s) closed.

OPEN <channel_list> Open channel(s).

OPEN? <channel _list> Query channel(s) opened.

SCAN <channel_list> Define channels for scanning.

STATus :OPERation:CONDition? Return the contents of the Operation Condition Register.
:OPERation:ENABIe <unmask> Enable events in the Operation Event Register to be reported.
:OPERation:ENABIe? Return the unmask value set by STAT:OPER:ENAB command.
:OPERation[:EVENt]? Return the contents of the Operation Event Register.
:PRESet Set Enable Register bits to 0.

SYSTem :CDEScription? <card_num> Returns description of the module.

:CPON <card_num> | ALL Opens all channels on the specified module(s).

:CTYPe? <card_num> Returns the module type.

:ERRor? Returns error number/message in the error queue.

:VERSion? Returns the version of the SCPI standard.
TRIGger [:IMMediate] Causes a trigger event to occur.

:SOURCce <source>

:SOURce?

Set trigger source to BUS, or EXT, or HOLD, or IMM, ECLTrgn
or TTLTrgn.
Query scan trigger source.

Chapter 4

Command Reference 83

IEEE 488.2 Common Command Reference

The following table lists the IEEE 488.2 Common (*) Commands that apply to the
E8480A module.

Command

Command Description

*CLS

Clears all status registers (see STATus:OPERation[:EVENTt]?) and clears the error queue.

*ESE <register value>

Enable Standard Event.

*ESE? Enable Standard Event Query.

*ESR? Standard Event Status Register Query.

*IDN? Instrument ID Query; returns identification string of the module.
*OPC Operation Complete.

*OPC? Operation Complete Query.

*RCL <numeric state>

Recalls the instrument state saved by *SAV. You must reconfigure the scan list.

*RST

Resets the module. Opens all channels and invalidates current channel list for scanning. Sets
ARM:COUN 1, TRIG:SOUR IMM, and INIT:CONT OFF.

*SAV <numeric state>

Stores the instrument state but does not save the scan list.

*SRE <register value>

Service request enable, enables status register bits.

*SRE? Service request enable query.

*STB? Read status byte query.

*TRG Triggers the module to advance the scan when scan is enabled and trigger source is
TRIGger:SOURce BUS.

*TST? Self-test. Executes an internal self-test and returns only the first error encountered. Does not return
multiple errors. The following is a list of responses you can obtain where "cc" is the card number with
the leading zero deleted.

+0 if self test passes.
+cc01 for firmware error.
+cc02 for bus error (problem communicating with the module).
+cc03 for incorrect ID information read back from the module’s ID register.
+cc05 for hardware and firmware have different values. Possibly a hardware fault or an
outside entity is register programming the E8480A.
+ccl0 if an interrupt was expected but not received.
+ccll if the busy bit was not held for a sufficient amount of time.
*WAI Wait to Complete.

84 Command Reference

Chapter 4

Appendix A
E8480A Specifications

ITEMS

SPECIFICATIONS

GENERAL CHARACTERISTICS

Module Size/Device Type:

Total Channels:
Relays Type:

Typical Relay Life:

Power Requirements:

Watts/slot:

Cooling/slot:

Operating Temperature:

Operating Humidity:

No Load:

At Rated Load (5 Vdc & 0.1A):

Peak Module Current:
Dynamic Module Current:

C-Size 1-Slot, Register based, A16,
slave only, P1 and P2 Connectors

40 channels

Non-latching Form A

1x 107
1x10°

35A@+5V
01A@+5V

86 W

0.70 mm H,O @ 6.9 Liter/sec for 10°C rise

0-55°C

65% RH, 0 - 40°C

INPUT CHARACTERISTICS
Maximum Voltage:
Maximum Current:

Maximum Power:

Non-inductive Per Channel: 2

Per channel:
Per Module:

150 Vdc, 280 Vac,ms, 2500 Vpk
12 Adc @ 30 Vdc, or 12 Aacyms

360 W, or 3360 VA
2160 W, or 20160 VA

DC PERFORMANCE

Initial Closed Channel Resistance: 0.1 Q (typical)
Isolation resistance: < (40°C, 65% RH): >108 0
(between any two points) < (25°C, 40% RH): >10°0Q
Thermal Offset: Per Channel: <10 uv
AC PERFORMANCE
Capacitance: Hi to Lo: < 200 pF
Channel to Channel: < 200 pF
Channel to Chassis: < 200 pF
Bandwidth (-3 dB): 10 MHz
Crosstalk: < 10 KHz: <-65dB
(Channel to Channel for ZI = Zs = 50Q) <100 KHz: <-45dB

Time to Close or Open a Channel:

15 ms (typical)

a. 8.0 Adc @ 35 Vdc; 3.5 Adc @ 40 Vdc; 1.5 Adc @ 50 Vdc; 0.8 Adc @ 70 Vdc; 0.3 Adc @ 150 Vdc.

Appendix A

E8480A Specifications

85

Notes:

86 EB8480A Specifications Appendix A

Appendix B
Register-Based Programming

About This Appendix

The Agilent EB480A High Power General Purpose (GP) Switch moduleisa
register-based product which does not support the V X Ibus word serial
protocol. When a SCPI command issent to the modul e, the instrument driver
resident in the Agilent E1406A command maodule parses the command and
programs the modul e at the register level.

Register-based programming is a series of reads and writes directly to the
modul e registers. Thisincreases throughput speed since it eliminates
command parsing and allows the use of an embedded controller. Also,
register programming provides an avenue for usersto control aV X module
with an alternate V X1 controller device and eliminate the need for using an
E1406A command module.

This appendix contains the information you need for register-based
programming. The contents include:

® Register Addressingo 87
® RegistersDescription i 91

Register Addressing

Base Address

Register addresses for register-based devices are located in the upper 25%
of VXI A16 address space. Every V XI device (up to 256 devices) is
alocated a 32 word (64 byte) block of addresses. Figure B-1 on page 88
shows the register address |ocation within A16 asit might be mapped by an
embedded controller. Figure B-2 on page 89 shows the location of A16
address space in the E1406A command module.

When you are reading from or writing to aregister of the module, a
hexadecimal or decimal register address needsto be specified. Thisaddress
consists of abase address plus aregister offset:

Register Address = Base Address + Register Offsat

The base address used in register-based programming depends on whether
the A16 address space is outside or inside the E1406A command module.

Appendix B

Register-Based Programming 87

A16 Address Space When the E1406A command module is not part of your VX Ibus system
Outside the Command (Figure B-1), the module' s base address is computed as:

\

Module
CO000;, + (LADDRy, * 40;)
- or (decimal)
49,152 + (LADDR * 64)
where C000y, (49,152) is the starting location of the VXI A16 addresses,
LADDR isthe modul€' slogical address, and 64 (40, is the number of
address bytes per register-based module. For example, the modul€’ sfactory
set logical addressis 120 (78y)). If this addressis not changed, the module
will have a base address of:
CO000y, + (78, * 40;,) = C000y;, + 1EQ00;, = DEOO},
- or (decimal)
49,152 + (120 * 64) = 49,152 + 7680 = 56,832
/ : Register -
Offset Description
24 Emergency Control Register
FFFF 22, Timer Control Register 2
FFFF, 20, Timer Confrol Regjister 1
(000
" Regjister . °
Alé Address : :
Aadress Spgce
Space - 14 Relay Control Register 3
€000, 12, Relay Control Register 2
(49.192) 10 Relay Control Register 1
0000, .
[] ®
[[]
[] L]
* Base Address = C000, + (Logical Address * 64)
o 0C, | Inferrupt Selection Register
= 49,152 + (Logfcal Address *64) 04, Status/Control Regjister
Register Address = Base Address + Register Offset 02, Device Type Register
00, ID Register

N

Figure B-1. Registers within A16 Address Space

1. Numberswith a subscripted "h" are in hexadecimal format. Numbers without the subscripted "h" arein

decimal format.

88 Register-Based Programming

Appendix B

A16 Address Space When the A16 address spaceisinside the Agilent E1406A command
Inside the Command module (Figure B-2), the module's base address is computed as:*

Module
1FCO000;, + (LADDRy, * 40;)
- or (decimal)
2,080,768 + (LADDR * 64)
where 1FC000;, (2,080,768) isthe starting location of the register addresses,
LADDR isthe modul€ s logical address, and 64 (40;) is the number of
address bytes per register-based device. Again, the modul€’ s factory set
logical addressis 120 (78y,). If this address is not changed, the module will
have a base address of:
1FCO000y, + (78, * 40y,) = 1FCO000y, + 1E00;, = 1FDEQO;,
- or (decimal)
2,080,768 + (120 * 64) = 2,080,768 + 7680 = 2,088,448
| Regist . \
Adg[];(s?vl o gf%l;er Description
FFFFFF, 24_ | Emergency Control Register
22, Timer Control Register 2
N 200000, 20, | Timer Confrol Register 1
' .. 200000, . .
..... 1FCO00, N
A24 Register . .
Address Al Address -
Space Address Space 14, Relay Contfrol Register 3
Space - 12, Relay Control Register 2
1FC000, ™. 10, Relay Control Register 1
200000 | 1F0000, : . .
TFO000, f--====n=sssmeeeees . .
. 0C, Interrupt Selection Register
* Base Address = 1FC000,_ + (Logical Address * 64) |
000000 or 04, Status/Control Register
" = 2,080,768 + (Logical Address *64) 02, Device Type Register
Register Addiress = Base Address + Register Offset “ oo ID Register

N

/

Figure B-2. Registers within Command Module’s A16 Address Space

1. Numberswith a subscripted "h" are in hexadecimal format. Numbers without the subscripted "h" arein
decimal format.

Appendix B

Register-Based Programming 89

Register Offset Theregister offset isthe register’ slocation in the block of 64 address bytes.
For example, the modul€e's Status/Control Register has an offset of 04,

When you write acommand to this register, the offset is added to the base
address to form the register address:

DEQO}, + 04,= DEO4;,
1FDEOO}, + 04, = 1FDE04;,

- or (decimal)

56,832 + 4 = 56,836
2,088,448 + 4 = 2,088,452

90 Register-Based Programming Appendix B

Registers Description

The E8480A module contains 10 registers as shown in Table B-1 on
page 91. Y ou can write to the writable (W) registers and read from the
readable (R) registers. This section contains a description of the registers
followed by a bit map of the registersin sequentia address order.

NOTE Undefined register bits (shown as"x" in the Tables) return as"1" when the
register isread, and have no effect when written to.

Table B-1. Module Registers

Registers Addr. Offset R/W Register Address
Manufacturer ID Register 00y, R base + 00y,
Device Type Register 02y, R base + 02,
Status/Control Register 04y, R/W base + 04y,
Interrupt Selection Register 0C,, R/W base + 0Cy,
Relay Control Register 1 (for Channels 00-15) 10y R/W base + 10y,
Relay Control Register 2 (for Channels 16-31) 12, R/W base + 12,
Relay Control Register 3 (for Channels 32-39) 14, R/W base + 14,
Timer Control Register 1 20y, R/W base + 20y,
Timer Control Register 2 22y R/W base + 22,
Emergency Control Register 24, R/W base + 24,

Appendix B Register-Based Programming 91

ID Register TheManufacturer Identification Register is at offset address 00, Reading
the register returns FFFF}, indicating the manufacturer is Agilent
Technologies and the module is an A16 register-based device.

base + 00y, | 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Write X

Read Manufacturer ID - returns FFFF,, in Agilent Technologies A16 only register-based card

Device Type TheDevice Type Register isat offset address 02, Reading the register
Reg ister returns02D0y, indicating that the device is an EB480A module.

base + 02}, | 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Write X

Read 02D0y,

Status/Control The Status/Control Register is at offset address 04, It is used to control the
Reg ister module and inform the user of its status.

base+04, | 15 | 14 | 13 | 12 | 11 | 10 | 9 8 7 6 5 4 3 2 1 0
Write a X |RQ E/D X S R
Read ? X MS X B IRQ E/D X 1 P X

a. Writing to the reserved bits ("x") will cause no action. We recommend writing "1" to these bits.
b. Reading from the reserved bits ("x") will return 8" 1". Do not rely on these value for card operation.

Reading the When reading the status/control register, the following bits are of
Status/Control Register Importance:

® Self-test Passed (bit 2) - Used to inform the user of the self-test status.
"1" inthisfield indicates the module has successfully passed its
self-test, and "0" indicates that the module is either executing or has
failed its self-test.

® |nterrupt Satus (bit 6) - Used to inform the user of the interrupt
status. "0" indicates that the interrupt is enabled, and "1" indicates that
the interrupt is disabled. The interrupt generated after a channel has
been closed can be disabled.

® Busy (bit 7) - Used to inform the user of a busy condition. "0"
indicates that the module is busy, and "1" indicates that the moduleis
not busy. Each relay requires about 20 ms execution time during which
time the module is busy.

92 Register-Based Programming Appendix B

Interrupt Selection

NOTE

NOTE

Writing to the
Status/Control Register

* Modid Select (bit 14) - "0" in this bit indicates that the module is
selected by a high state on the P2 MODID line, and "1" indicatesit is
not selected viathe P2 MODID line.

Asan example, if aread of the Status Register (base + 04;)) returns "FFBF

(11112112101111112)", it indicates that the module is not busy (bit 7 = 1)
and the interrupt is enabled (bit 6 = 0).

When writing to the status/control register, the following bits are of
importance:

® Soft Reset (bit 0) - Writing a"1" to this bit will force the module to
reset (all channels open).

When writing to the registersit is necessary to write "0" to bit O after the
reset has been performed before any other commands can be programmed
and executed. SCPI commands take care of this automatically.

® Sysfail Inhibit (bit 1) - Writing a"1" to this bit will disable the
modul e from driving the SY SFAIL line (all channels open). The Slot-0
module can detect the failed module viathisline.

® Interrupt Enable/Disable (bit 6) - Writing a"1" to this bit will
disable the module from sending an interrupt request (generated by
operating relays). Writing a"0" to this bit will enable the module’s
interrupt capability.

Typically, interrupts are only disabled to "peek-poke" a module. Refer to
your command module’'s operating manual before disabling the interrupt.

The Interrupt Selection Register is at offset address 0C,,. It is used to set the

Reg ister interrupt level of the module and inform the user of the current interrupt
level of the module.
base + 0C;, 15 | 14 | 13 | 12 | 11 | 10 | 9 8 7 6 5 4 3 2 1 0
Write X Interrupt Level
Read X Interrupt Level

® You can set the interrupt level of the module by writing to I nterrupt
L evel Bits (bits 0-2) of the register. Writing bits 2-0 with 001, 010,
011, 100, 101, 110, or 111 will set theinterrupt level to 1 through 7
which corresponds to the V XI backplane lines 1-7. The highest
interrupt level is 7, and the lowest level is 1 (default value).

Appendix B

Register-Based Programming 93

® Reading the register will return the current interrupt level of the
module. The returned value 001, 010, 011, 100, 101, 110, or 111 in
Bits 2-0 corresponds to interrupt level 1 through 7.

Rel ay Control Therearethreerel ay control registers used to contral the 40 channel relays
Re g isters of the module. All these registers are readable/writable (R/W) registers.

-- Relay Control Register 1 for Channel 00-15
-- Relay Control Register 2 for Channel 16-31
-- Relay Control Register 3 for Channel 32-39

Relay Control Register for Channels 00 - 15 (base + 10y)

base + 10, | 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Write ch ch ch ch ch ch ch ch ch ch ch ch ch ch ch ch
Read 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Relay Control Register for Channels 16 - 31 (base + 12})

base + 12, | 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Write ch | ch | ch | ch|ch |ch | ch|ch | ch | ch | ch | ch | ch | ch| ch]| ch
Road | 31 | 30 | 20 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16

Relay Control Register for Channels 32 - 39 (base + 14;)

base + 14;, | 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Write ch | ch | ch | ch | ch | ch | ch | ch
Read 39 | 38 | 37 | 36 | 35 | 34 | 33 | 32

Thenumbersshown in the aboveregister mapsindicate the channel numbers
of the module.

® Writing a"1" to one bit will close related channel, and writing a"0"
will open the channel. For example, to close channel 02, you need to
writea"1" to bit 2 of the Relay Control Register (base +10;,) to close
channel 02 and all other bits are set to "0".

® Reading the channel bit indicates to get the state of the relay driver
circuit only. It cannot detect a defectiverelay. A bit that is"1"
represents the related channel relay is closed. A bit that is"0" indicates
the related channel relay is open.

® \WWhen the module is powered on or reset, all the channel relays are
open and when you read from these registers, all the bits are zero.

94 Register-Based Programming Appendix B

Timer Control
Registers

Each relay on the E8480A module requires about 15 ms settling time during
which time the module is busy. There are two registers used to provide a
programmable timer for the relay settling time. They are:

-- Timer Control Register 1 (base + 20,
-- Timer Control Register 2 (base + 22,))

Timer Control Register 1 (base + 20;)

base + 20,

15

14

13

12

11 10 9 8 7 6 5 4 3 2 1 0

Write

Set Time

Read

Read Time

Timer Control Register 2 (base + 22;)

base + 22,

15

14

13

12

11 10 9 8 7 6 5 4 3 2 1 0

Write

X Set Time

Read

Read Time

NOTE

Asshown in above table, totally 24-bits of the two Timer Control Registers
can be used to preset the relay settling time. Since the system clock is 16
MHz, each step of the timer is 62.5 nanoseconds. The maximum
programmable timer can be set to:

62.5 ns* FFFFFF,, = 1.0486 second

The settling time is calculated based on the following formula:

Settling Time = 62.5 ns* (FFFFFF, - xxyyyyh)

where yyyy}, is the value written to the Timer Control Register 1 and xx;, to
the Timer Control Register 2.

For example, if you want to preset the relay settling time to 15 ms, you
should write "567F" to Timer Control Register 1 (base + 20) and "FC,," to

Timer Control Register 2 (base + 22). Since:

XXyYYy, = FFFFFF}, - (15 ms/ 62.5 ns),, = FC567F),

Thesetwo registers can also be read back. Thereturned value can be used to
calculate the settling time set for the relays.

For register-based programming, you must set the relay settling time each
time the module is powered up. We highly recommend you set the timeto
15 msfor the E8480A relays.

Appendix B

Register-Based Programming 95

Emergency Control TheEmergency Control Register isat offset address 24, It is used to enable

Reg ister ordisablethe"Emergency Reset" port onthe modul€' sfront panel to accept
external emergency trigger signal. This register can also be read back.

base + 24, 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Write X E/D
Read X Emer. X E/D

Writing to the When writing to the Emergency Control register, only bit O of the register is
Emergency Control of use:

Register
g ® Writing a"1" to bit O will disable the "Emergency Reset" port on the

front panel of the module. By default, it is disabled (bit 0 = 1).

® Writing a"0" to this bit will enable the "Emergency Reset" port on the
front panel of the module. When enabled, the "Emergency Reset" port
can accept aTTL low voltage or a+5V negative-going pulse to force
the module to open all channel relays. Furthermore, all relays on the
module can not be operated any more unless the current emergency
state is cleared.

® Once the emergency occurs, you need to clear the emergency stateto
recover the operation on the module relays. This can be done by
writing a"1", then a"0" to this hit.

Reading the Emergency When reading the Emergency Control register, the following bits are of use:

Control Register _ _
® Bit 0 (E/D) - Used to inform the user of the state of the "Emergency

Reset" port whether enabled or disabled. "1" in thisfield indicates the
port isdisabled, and "0" indicates the port is enabled.

® Bit 6 (Emer.) - Used to inform the user of the emergency status on the
"Emergency Reset" port whether happened or not. "1" indicates an
emergency happened, and "0" indicates no emergency happened.

96 Register-Based Programming Appendix B

Appendix C
Error Messages

Table C-1 lists the error messages associated with the E8480A High Power
General Purpose Switch Maodule when programmed with SCPI commands.
See the appropriate mainframe manual for acompletelist of error messages.

Table C-1. Error Messages

Number Error Message Potential Cause(s)

-211 Trigger ignored Trigger received when scan not enabled. Trigger received after
scan complete. Trigger too fast.

-213 INIT Ignored Attempting to execute an INIT command when a scan is
already in progress.

-224 lllegal parameter value Attempting to execute a command with a parameter not
applicable to the command.

-240 Hardware error Command failed due to a hardware problem.

-310 System error Too many characters in the channel list expression.

1500 External trigger source Assigning an external trigger source to a switchbox when the

already allocated trigger source has already been assigned to another switchbox.

2000 Invalid card number Addressing a module (card) in a switchbox that is not part of the
switchbox.

2001 Invalid channel number Attempting to address a channel of a module in a switchbox that
is not supported by the module (e.g., channel 99 of a module).

2006 Command not supported | Sending a command to a module (card) in a switchbox that is

on this card unsupported by the module.

2008 Scan list not initialized Executing an INIT command without a channel list defined.

2009 Too many channels in Attempting to address more channels than available in the

channel list switchbox.

2011 Empty channel list Channel lists contains no valid channels.

2012 Invalid Channel Range Invalid channel(s) specified in SCAN <channel_list> command.
Attempting to begin scanning when no valid channel list is
defined.

2600 Function not supported Sending a command to a module (card) in a switchbox that is

on this card not supported by the module or switchbox.

2601 Missing parameter Sending a command requiring a channel_list without the
channel_list.

Appendix C

Error Messages 97

Notes:

98 Error Messages Appendix C

Appendix D
Relay Life

Rel ay Life Electromechanical rel aysare subject to normal wear-out. Relay life depends
onseveral factors. Theeffectsof |oading and switching frequency arebriefly
discussed below:

Relay Load. In general, higher power switching reducesrelay life. In
addition, capacitive/inductive loads and high inrush currents (for example,
turning on alamp or starting amotor) reducesrelay life. Exceeding specified
maxi mum inputs can cause catastrophic failure.

Switching Fregquency. Relay contacts heat up when switched. Asthe
switching frequency increases, the contacts have less time to dissipate heat.
The resulting increase in contact temperature also reduces relay life.

End-of-Life A preventive maintenance routine can prevent problems caused by
Detection unexpected relay failure. The end of thelife of the relay can be determined
by using one or more of the three methods described bel ow. The best method
(or combination of methods), as well as the failure criteria, depends on the
application in which therelay is used.

Contact Resistance. Asthe relay beginsto wear out, its contact resistance
increases. When the resistance exceeds a predetermined value, the relay
should be replaced.

Stability of Contact Resistance. The stability of the contact resistance
decreases with age. Using this method, the contact resistance is measured
several (5-10) times, and the variance of the measurements is determined.
Anincrease in the variance indicates deteriorating performance.

Number of Operations. Relays can be replaced after a predetermined
number of contact closures. However, this method requires knowledge of
the applied load and life specifications for the applied load.

Appendix D Relay Life 99

Notes:

100 Relay Life Appendix D

Index

A

A16 Address Space, 87— 89
inside command module, 89
outside command module, 88

Abbreviated SCPI Commands, 50

ABORt Command, 52

Accessories available, 21

Address
A16 address space, 87
base address, 87
channel address, 13
logical, 18, 88, 89
register address, 87
secondary, 13, 27

ARM subsystem, 53— 54

ARM:COUNt, 53

ARM:COUNLt?, 54

B

Base Address, 87
Boolean Command Parameter, 50

C

C language example programs
closing asingle channel, 15
closing multiple channels, 32
identifying the module, 29
scanning channels using Trig In/Out ports, 35
scanning channelswith TTL trigger, 40
using scan complete bit, 44
Card Number, 14
Channel
addresses, 13
Numbers, 14
closing channels, 15, 31
Command Format
common, 49
SCPI, 49
Command Module
A16 address space inside the, 89
A16 address space outside the, 88
programming with, 27
scanning channels with, 33
Command Reference
|EEE 488.2 Common, 84
SCPI, 51-83

Commands
[ROUTL:] subsystem, 69— 72
abbreviated, 50
ABORt, 52
ARM subsystem, 53— 54
DIAGnostic subsystem, 55— 60
DISPlay subsystem, 61— 62
|EEE 488.2 common, 84
implied, 50
INITiate subsystem, 63— 64
linking Common Commands with SCPI, 51
linking multiple SCPI commands, 51
OUTPut subsystem, 65— 68
parameter types, 50
separator, 49
STATus subsystem, 73— 76
SY STem subsystem, 77— 79
TRIGger subsystem, 80— 82
typesof, 49
Variable, 50
Common Commands
*CLS, 84
*ESE, 84
*ESE?, 84
*ESR?, 84
*|DN?, 84
*OPC, 84
*OPC?, 84
*RCL, 84
*RST, 84
*SAV, 84
*SRE, 84
*SRE?, 84
*STB, 84
*TRG, 84
*TST?, 84
*WAI, 84
format, 49
Quick Reference, 84
Configuration
emergency reset, 24
interrupt priority, 19
logical address, 18
Connecting
User Inputs, 20
User-supplied connectors to the module, 22

Agilent E8480A User’s Manual Index

101

C (continued)

Connectors
location, 20
Option 105, 21
Option 106, 21
order information, 21
Pinout diagram, 20

D
declaration of conformity, 9
Descriptions
general information, 11
registers, 91

Detecting Error Conditions, 47
Device Type Register, 92
DIAGnostic subsystem, 55— 60
DIAGnostic:EMERgency:CLEar, 55
DIAGnostic.EMERgency:STATus?, 56
DIAGnostic.EMERgency: TRIGger:STATe, 56
DIAGnostic.EMERgency: TRIGger:STATe?, 57
DIAGnostic:INTerrupt:TIMer, 58
DIAGnostic:INTerrupt:TIMer?, 59
DIAGnostic:INTerrupt[:LINeg], 57
DIAGnostic:INTerrupt[:LINe]?, 58
DIAGnostic:SCAN:DELay, 59
DIAGnostic:SCAN:DELay?, 59
DIAGnostic: TEST:SEEProm?, 60
DIAGnostic: TEST[:RELay]?, 60
Disable

continuous scanning, 63

ECL Trigger BusLine, 65

emergency reset, 56, 96

interrupts, 57, 93

Trig Out port, 66

TTL Trigger BusLine, 67
Discrete Command Parameter, 50
DISPlay subsystem, 61—62
DISPlay:MONitor:CARD, 61
DISPlay:MONitor:CARD?, 61
DISPlay:MONitor[:STATe], 62
DISPlay:MONitor[:STATe]?, 62
documentation history, 8

E

ECL Trigger
guery state of, 66
setting, 65

Emergency Reset
clearing, 24, 55, 96
description, 11, 24

enable/disable setting, 24, 56, 96
port enable/disable quering, 57, 96

port location, 12, 24
status quering, 56, 96
Enable
continuous scanning, 63
emergency reset, 56, 96
interrupts, 57, 93
Trig Out port, 66
TTL Trigger BusLine, 67
Error
example program, 47
message, list of, 97
number, list of, 97
querying, 47, 79
Types, 97
Event Register, 76
Examples
Closing a Single Channel, 15
Closing Multiple Channels, 31
Identifying Module, 29
Querying Errors, 47

Saving and Recalling Instrument State, 46
Scanning Channels Using Trig In/Out Ports, 33
Scanning Channels Using TTL Trigger, 38
Synchronizing the Instruments, 48

Using the Scan Complete Bit, 43

External Trig In/Out, 33, 81

F

Field Wiring, 20
Format
common command, 49
SCPI command, 49
Front Panel
Emergency Reset port, 12, 24
figure, 12, 20
Front Panel connectors pinout, 20

G
Group Execute Trigger (GET), 81

102 Agilent E8480A User’s Manual Index

H

HTBasic language example programs
closing asingle channel, 15
closing multiple channels, 32
identifying the module, 29
guerying system errors, 47
saving and recalling instrument state, 46

scanning channels using Trig In/Out ports, 34

scanning channelswith TTL trigger, 39
synchronizing instruments, 48
using scan complete bit, 43

I
ID Register, 92

|EEE 488.2 Common Command Reference, 84

Implied Commands, 50
Initial Operation, 15
INITiate subsystem, 63— 64
INITiate:CONTinuous, 63
INITiate:CONTinuous?, 64
INITiate[:IMMediate], 64
Instrument Definition, 13
Instruments, synchronizing, 48
interface address, 12
Interrupt
disabling, 57, 93
enabling, 57, 93
priority level, 93
Interrupt Selectionl Register, 93

L

LADDR, 88, 89

Linking Commands, 51

Logical Address
factory setting, 18, 88, 89
register-based, 88, 89
setting, 18, 88, 89
switch location, 18

M

Module
Card Number, 14
channel addresses, 13
Channel Numbers, 14
Connectinf field wiring, 20
connectors pinout, 20
description, 11
emergency reset, 24

Module (Continued)
example programs, 27
front panel figure, 12, 20
interrupt priority, 19
logical address, 18, 88, 89
programming with, 13
Reset Conditions, 28
simplified schematic, 12
Specifications, 85

Multiple-module Switchbox, 14

N

Non-continuous Scanning, 63
Numeric Command Parameter, 50

O

Offset, register, 90

opening channels, 15, 31

Operation Status Register, 73
Scan Complete Bit, 73

Option 105, 21

Option 106, 21

Optional Parameters, 51

OUTPut subsystem, 65— 68

OUTPut:ECLTrgn[:STATe], 65

OUTPut:ECLTrgn[:STATe]?, 66

OUTPut:TTLTrgn[:STATe], 67

OUTPut: TTLTrgn[:STATe]?, 68

OUTPUt[:EXTernal][:STATe], 66

OUTPUt[:EXTernal][:STATe]?, 67

P

Parameters

boolean, 50

discrete, 50

numeric, 50

optional, 51

types of (SCPI), 50
Programming

examples, 27

Register-based, 87

with SCPI commands, 13
Protecting Relays and Circuits, 23

Adding Varistors, 23

Allowable Switch Current, 25

Emergency Reset, 24

Relay end-of-life detection, 99

Agilent E8480A User’s Manual Index

103

Q

Quick Reference
Common Command, 84
SCPI Command, 83

R

Readable Registers, 91
Reading
Device Type Register, 92

Emergency Control Register, 96

ID Register, 92

Interrupt Selection Register, 94

Relay Control Registers, 94
Status/Control Register, 92
Timer Control Registers, 95
Recalling and Saving States, 46

Register-based Programming, 87

Registers
addressing, 87
base address, 87
description, 91
Device Type, 92
ID, 92

Interrupt Selection, 93

offset, 90

Relay Control, 94

Status/Control, 92

Timer Control, 95
Relay Control Registers, 94
Relays

end of the life detection, 99
Reset Conditions, 28
restricted rights statement, 7
[ROUTe]CLOSe, 69
[ROUTe]CLOSe?, 70
[ROUTe]OPEN, 70
[ROUTe]OPEN?, 71
[ROUTe]SCAN, 71
[ROUTLt:] subsystem, 69— 72

S

safety symbols, 8
Scan Complete Bit, 73
Scanning Channels, 33
Using Trig In/Out Ports, 33
Using TTL Trigger, 38
SCPI Command Format, 49

SCPI Command Quick Reference, 83

SCPI Command Reference, 51— 82

[ROUTEe] subsystem, 69— 72
[ROUTe]CLOSe, 69
[ROUTe]CLOSe?, 70
[ROUTe]OPEN, 70
[ROUTe]OPEN?, 71
[ROUTe]SCAN, 71

ABORt, 52

ARM subsystem, 53— 54
ARM:COUNt, 53

ARM:COUNt?, 54
DIAGnostic.EMERgency:CLEar, 55
DIAGnostic.EMERgency:STATus?, 56
DIAGnostic.EMERgency: TRIGger:STATe, 56
DIAGnostic.EMERgency: TRIGger:STATe?, 57
DIAGnostic:INTerrupt:TIMer, 58
DIAGnostic:INTerrupt:TIMer?, 59
DIAGnostic:INTerrupt[:LINeg], 57
DIAGnostic:INTerrupt[:LINe]?, 58
DIAGnostic:SCAN:DELay, 59
DIAGnostic:SCAN:DELay?, 59
DIAGnostic: TEST:SEEProm?, 60
DIAGnostic: TEST[:RELays]?, 60
DIAGnostics subsystem, 55— 60
DISPlay subsystem, 61— 62
DISPlay:MONitor:CARD, 61
DISPlay:MONitor:CARD?, 61
DISPlay:MONitor[:STATe], 62
DISPlay:MONitor[:STATe]?, 62
INITiate subsystem, 63— 64
INITiate:CONTinuous, 63
INITiate:CONTinuous?, 64
INITiate[:IMMediate], 64

OUTPut subsystem, 65— 68
OUTPut:ECLTrgn[:STATe], 65
OUTPut:ECLTrgn[:STATe]?, 66
OUTPut:TTLTrgn[:STATe], 67
OUTPut: TTLTrgn[:STATe]?, 68
OUTPut[:EXTernal][:STATe], 66
OUTPUt[:EX Ternal][:STATe]?, 67
STATus subsystem, 73— 76
STATus.OPERation;:CONDition?, 75
STATus.OPERation:ENABIe, 75
STATus.OPERation:ENABIe?, 75
STATus OPERation[:EVENt]?, 76
STATUS.PRESet, 76

SY STem subsystem, 77— 79

SY STem:CDEScription?, 77
SYSTem:CPON, 78
SYSTem:CTYPe?, 78

104 Agilent E8480A User’s Manual Index

S (continued)

SCPI Command Reference (continued)
SYSTem:ERRor?, 79
SYSTem:VERSion?, 79
TRIGger subsystem, 80— 82
TRIGger:SOURce, 81
TRIGger:SOURce?, 82
TRIGger[:IMMediate], 80

secondary address, 27

Separator, command, 49

Setting the Interrupt Priority, 19

Setting the Logical Address, 18

Single-module Switchbox, 14

Specifications, 85

STATus subsystem, 73— 76

Status System Register
Block Diagram, 74
Operation Status Register, 73
Standard Event Status Register, 73
Status Byte Register, 73

Status/Control Register, 92

STATus.OPERation:CONDition?, 75

STATus.OPERation:ENABIe, 75

STATus.OPERation:ENABIe?, 75

STATus.OPERation[:EVENt]?, 76

STATUS.PRESet, 76

Subsystems (SCPI Commands)
[ROUTe], 69— 72
ABORt, 52
ARM, 53-54
DIAGnostic, 55— 60
DISPlay, 61— 62
INITiate, 63— 64
OUTPut, 65—68
STATus, 73—76
SYSTem, 77—79
TRIGger, 80—82

Switchbox
multiple-module, 14
single-module, 14

switching channels, 15, 31

Synchronizing the Instruments, 48

SY STem subsystem, 77— 79

SY STem:CDEScription?, 77

SYSTem:CPON, 78

SYSTem:CTYPe?, 78

SYSTem:ERRor?, 79

SYSTem:VERSion?, 79

T

Timer Control Registers, 95
trigger sources, 81
TRIGger subsystem, 80— 82
TRIGger:SOURCce, 81
TRIGger:SOURce?, 82
TRIGger[:IMMediate], 80
TTL Trigger

guery state of, 68

setting, 67
Types

command parametes, 50

commands, 49

error, 97

V

Variable Commands, 50
Varistors, 23

wW

WARNINGS, 8

warranty statement, 7

Wiring information, 20

writable registers, 91

Writing to
Emergency Control Register, 96
Interrupt Selection Register, 93
Relay Control Registers, 94
Status/Control Register, 93
Timer Control Registers, 95

Agilent E8480A User’s Manual Index

105

Notes:

106 Agilent E8480A User’s Manual Index

%, Agilent Technologies

Manual Part Number: E8480-90001
Printed in U.S.A. E0301

	Table of Contents
	AGILENT TECHNOLOGIES WARRANTY STATEMENT
	Safety Symbols
	WARNINGS
	Declaration of Conformity
	Chapter 1 Getting Started
	About This Chapter
	Agilent E8480A Module Description
	Basic Operation
	Typical Configuration

	Instrument Definition
	Programming the Module
	Specifying SCPI Commands
	Channel Addresses
	Channel Number
	Card Number

	Initial Operation
	Example: Closing a Channel (HTBasic)
	Example: Closing a Channel (C/C++)

	Chapter 2 Configuring the Module
	About This Chapter
	Warnings and Cautions
	Setting the Logical Address
	Setting the Interrupt Priority
	Connecting Field Wiring to the Module
	Front Panel & Connectors Pinout
	Accessories for Wiring
	Attaching Connectors to the Module

	Protecting Relays and Circuits
	Adding Varistors
	Emergency Reset
	Maximum Allowable Module Switch Current

	Chapter 3 Using the Module
	About This Chapter
	Module Commands Summary
	Power-On and Reset Conditions
	Module Identification
	Example: Identifying Module (HTBasic)
	Example: Identifying Module (C/C++)

	Switching Channels
	Example: Closing Multiple Channels (HTBasic)
	Example: Closing Multiple Channels (C/C++)

	Scanning Channels
	Example: Scanning Channels Using Trig In/Out Ports
	Programming with HTBasic
	Programming with C/C++

	Example: Scanning Channels Using TTL Trigger
	Programming with HTBasic
	Programming with C/C++

	Using the Scan Complete Bit
	Recalling and Saving States
	Example: Saving and Recalling Instrument State (HTBasic)

	Querying the Module
	Detecting Error Conditions
	Example: Querying Errors (HTBasic)

	Synchronizing the Instruments
	Example: Synchronizing the Instruments (HTBasic)

	Chapter 4 Command Reference
	About This Chapter
	Command Types
	Common Command Format
	SCPI Command Format
	Command Separator
	Abbreviated Commands
	Implied Commands
	Variable Commands
	Parameters

	Linking Commands

	SCPI Command Reference
	ABORt
	Subsystem Syntax
	Comments
	Example

	ARM
	Subsystem Syntax
	ARM:COUNt
	Parameters
	Comments
	Example

	ARM:COUNt?
	Parameters
	Comments
	Example

	DIAGnostic
	Subsystem Syntax
	DIAGnostic:EMERgency:CLEar
	Parameters
	Comments
	Example

	DIAGnostic:EMERgency:STATus?
	Parameters
	Comments
	Example

	DIAGnostic:EMERgency:TRIGger:STATe
	Parameters
	Comments
	Example

	DIAGnostic:EMERgency:TRIGger:STATe?
	Parameters
	Comments
	Example

	DIAGnostic:INTerrupt[:LINe]
	Parameters
	Comments
	Example

	DIAGnostic:INTerrupt[:LINe]?
	Parameters
	Comments
	Example

	DIAGnostic:INTerrupt:TIMer
	Parameters
	Comments
	Example

	DIAGnostic:INTerrupt:TIMer?
	Example

	DIAGnostic:SCAN:DELay
	Parameters
	Example

	DIAGnostic:SCAN:DELay?
	Example

	DIAGnostic:TEST[:RELays]?
	Comments
	Example

	DIAGnostic:TEST:SEEProm?
	Parameters
	Comments
	Example

	DISPlay
	Subsystem Syntax
	DISPlay:MONitor:CARD
	Parameters
	Comments
	Example

	DISPlay:MONitor:CARD?
	DISPlay:MONitor[:STATe]
	Parameters
	Comments
	Example

	DISPlay:MONitor[:STATe]?

	INITiate
	Subsystem Syntax
	INITiate:CONTinuous
	Parameters
	Comments
	Example

	INITiate:CONTinuous?
	Example

	INITiate[:IMMediate]
	Comments
	Example

	OUTPut
	Subsystem Syntax
	OUTPut:ECLTrgn[:STATe]
	Parameters
	Comments
	Example

	OUTPut:ECLTrgn[:STATe]?
	Example

	OUTPut[:EXTernal][:STATe]
	Parameters
	Comments
	Example

	OUTPut[:EXTernal][:STATe]?
	Example

	OUTPut:TTLTrgn[:STATe]
	Parameters
	Comments
	Example

	OUTPut:TTLTrgn[:STATe]?
	Example

	[ROUTe:]
	Subsystem Syntax
	[ROUTe:]CLOSe
	Parameters
	Comments
	Example

	[ROUTe:]CLOSe?
	Comments
	Example

	[ROUTe:]OPEN
	Parameters
	Comments
	Example

	[ROUTe:]OPEN?
	Comments
	Example

	[ROUTe:]SCAN
	Parameters
	Comments
	Example

	STATus
	Subsystem Syntax
	STATus:OPERation:CONDition?
	STATus:OPERation:ENABle
	Parameters
	Comments
	Example

	STATus:OPERation:ENABle?
	Comments
	Example

	STATus:OPERation[:EVENt]?
	Comments
	Example

	STATus:PRESet

	SYSTem
	Subsystem Syntax
	SYSTem:CDEScription?
	Parameters
	Comments
	Example

	SYSTem:CPON
	Parameters
	Comments
	Example

	SYSTem:CTYPe?
	Parameters
	Comments
	Example

	SYSTem:ERRor?
	Comments
	Example

	SYSTem:VERSion?
	Comments
	Example

	TRIGger
	Subsystem Syntax
	TRIGger[:IMMediate]
	Comments
	Example

	TRIGger:SOURce
	Parameters
	Comments
	Example
	Example

	TRIGger:SOURce?
	Example

	SCPI Command Quick Reference
	IEEE 488.2 Common Command Reference

	Appendix A E8480A Specifications
	Appendix B Register-Based Programming
	About This Appendix
	Register Addressing
	Base Address
	A16 Address Space Outside the Command Module
	A16 Address Space Inside the Command Module

	Register Offset

	Registers Description
	ID Register
	Device Type Register
	Status/Control Register
	Reading the Status/Control Register
	Writing to the Status/Control Register

	Interrupt Selection Register
	Relay Control Registers
	Timer Control Registers
	Emergency Control Register
	Writing to the Emergency Control Register
	Reading the Emergency Control Register

	Appendix C Error Messages
	Appendix D Relay Life
	Relay Life
	End-of-Life Detection

	Index

