

Agilent Technologies
E8480A High Power
General Purpose Switch Module
User’s Manual
E8480-90001
 Manual Part Number: E8480-90001
 Printed in U.S.A. E0301

Contents
Agilent E8480A User’s Manual
AGILENT TECHNOLOGIES WARRANTY STATEMENT..................................... 7
Safety Symbols ... 8
WARNINGS... 8
Declaration of Conformity.. 9

Chapter 1
Getting Started ... 11

About This Chapter... 11
Agilent E8480A Module Description ... 11

Basic Operation ... 11
Typical Configuration ... 12

Instrument Definition.. 13
Programming the Module ... 13

Specifying SCPI Commands ... 13
Channel Addresses .. 13

Initial Operation.. 15
Example: Closing a Channel (HTBasic) ... 15
Example: Closing a Channel (C/C++) .. 15

Chapter 2
Configuring the Module .. 17

About This Chapter... 17
Warnings and Cautions ... 17
Setting the Logical Address .. 18
Setting the Interrupt Priority ... 19
Connecting Field Wiring to the Module ... 20

Front Panel & Connectors Pinout .. 20
Accessories for Wiring .. 21
Attaching Connectors to the Module .. 22

Protecting Relays and Circuits.. 23
Adding Varistors ... 23
Emergency Reset ... 24
Maximum Allowable Module Switch Current .. 25

Chapter 3
Using the Module ... 27

About This Chapter... 27
Module Commands Summary .. 28
Power-On and Reset Conditions... 28
Module Identification ... 29

Example: Identifying Module (HTBasic) ... 29
Example: Identifying Module (C/C++) ... 29
 3

Switching Channels .. 31
Example: Closing Multiple Channels (HTBasic) .. 32
Example: Closing Multiple Channels (C/C++) ... 32

Scanning Channels.. 33
Example: Scanning Channels Using Trig In/Out Ports 33
Example: Scanning Channels Using TTL Trigger .. 38

Using the Scan Complete Bit.. 43
Recalling and Saving States.. 46

Example: Saving and Recalling Instrument State (HTBasic) 46
Querying the Module .. 47
Detecting Error Conditions ... 47

Example: Querying Errors (HTBasic) ... 47
Synchronizing the Instruments ... 48

Example: Synchronizing the Instruments (HTBasic) .. 48

Chapter 4
Command Reference ... 49

About This Chapter... 49
Command Types ... 49

Common Command Format .. 49
SCPI Command Format .. 49
Linking Commands ... 51

SCPI Command Reference ... 51
ABORt .. 52
ARM ... 53

ARM:COUNt .. 53
ARM:COUNt? .. 54

DIAGnostic ... 55
DIAGnostic:EMERgency:CLEar .. 55
DIAGnostic:EMERgency:STATus? ... 56
DIAGnostic:EMERgency:TRIGger:STATe ... 56
DIAGnostic:EMERgency:TRIGger:STATe? ... 57
DIAGnostic:INTerrupt[:LINe] .. 57
DIAGnostic:INTerrupt[:LINe]? .. 58
DIAGnostic:INTerrupt:TIMer .. 58
DIAGnostic:INTerrupt:TIMer? ... 59
DIAGnostic:SCAN:DELay ... 59
DIAGnostic:SCAN:DELay? ... 59
DIAGnostic:TEST[:RELays]? .. 60
DIAGnostic:TEST:SEEProm? .. 60

DISPlay... 61
DISPlay:MONitor:CARD ... 61
DISPlay:MONitor:CARD? ... 61
DISPlay:MONitor[:STATe] .. 62
DISPlay:MONitor[:STATe]? .. 62
4

INITiate... 63
INITiate:CONTinuous .. 63
INITiate:CONTinuous? ... 64
INITiate[:IMMediate] ... 64

OUTPut... 65
OUTPut:ECLTrgn[:STATe] ... 65
OUTPut:ECLTrgn[:STATe]? .. 66
OUTPut[:EXTernal][:STATe] .. 66
OUTPut[:EXTernal][:STATe]? .. 67
OUTPut:TTLTrgn[:STATe] .. 67
OUTPut:TTLTrgn[:STATe]? .. 68

[ROUTe:] .. 69
[ROUTe:]CLOSe .. 69
[ROUTe:]CLOSe? ... 70
[ROUTe:]OPEN .. 70
[ROUTe:]OPEN? .. 71
[ROUTe:]SCAN .. 71

STATus... 73
STATus:OPERation:CONDition? .. 75
STATus:OPERation:ENABle ... 75
STATus:OPERation:ENABle? ... 75
STATus:OPERation[:EVENt]? ... 76
STATus:PRESet .. 76

SYSTem.. 77
SYSTem:CDEScription? ... 77
SYSTem:CPON .. 78
SYSTem:CTYPe? ... 78
SYSTem:ERRor? .. 79
SYSTem:VERSion? .. 79

TRIGger .. 80
TRIGger[:IMMediate] ... 80
TRIGger:SOURce ... 81
TRIGger:SOURce? ... 82

SCPI Command Quick Reference .. 83
IEEE 488.2 Common Command Reference ... 84

Appendix A
E8480A Specifications ... 85

Appendix B
Register-Based Programming ... 87

About This Appendix.. 87
Register Addressing.. 87

Base Address ... 87
Register Offset ... 90
 5

Registers Description.. 91
ID Register .. 92
Device Type Register .. 92
Status/Control Register ... 92
Interrupt Selection Register ... 93
Relay Control Registers .. 94
Timer Control Registers .. 95
Emergency Control Register ... 96

Appendix C
Error Messages .. 97

Appendix D
Relay Life .. 99

Relay Life .. 99
End-of-Life Detection ... 99

Index ... 101
6

AGILENT TECHNOLOGIES WARRANTY STATEMENT

AGILENT PRODUCT: E8480A High Power General Purpose Switch Module DURATION OF WARRANTY: 3 years

1. Agilent Technologies warrants Agilent hardware, accessories and supplies against defects in materials and workmanship for the period
specified above. If Agilent receives notice of such defects during the warranty period, Agilent will, at its option, either repair or replace
products which prove to be defective. Replacement products may be either new or like-new.

2. Agilent warrants that Agilent software will not fail to execute its programming instructions, for the period specified above, due to
defects in material and workmanship when properly installed and used. If Agilent receives notice of such defects during the warranty
period, Agilent will replace software media which does not execute its programming instructions due to such defects.

3. Agilent does not warrant that the operation of Agilent products will be interrupted or error free. If Agilent is unable, within a reasonable
time, to repair or replace any product to a condition as warranted, customer will be entitled to a refund of the purchase price upon prompt
return of the product.

4. Agilent products may contain remanufactured parts equivalent to new in performance or may have been subject to incidental use.

5. The warranty period begins on the date of delivery or on the date of installation if installed by Agilent. If customer schedules or delays
Agilent installation more than 30 days after delivery, warranty begins on the 31st day from delivery.

6. Warranty does not apply to defects resulting from (a) improper or inadequate maintenance or calibration, (b) software, interfacing, parts
or supplies not supplied by Agilent, (c) unauthorized modification or misuse, (d) operation outside of the published environmental
specifications for the product, or (e) improper site preparation or maintenance.

7. TO THE EXTENT ALLOWED BY LOCAL LAW, THE ABOVE WARRANTIES ARE EXCLUSIVE AND NO OTHER
WARRANTY OR CONDITION, WHETHER WRITTEN OR ORAL, IS EXPRESSED OR IMPLIED AND AGILENT
SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTY OR CONDITIONS OF MERCHANTABILITY, SATISFACTORY
QUALITY, AND FITNESS FOR A PARTICULAR PURPOSE.

8. Agilent will be liable for damage to tangible property per incident up to the greater of $300,000 or the actual amount paid for the product
that is the subject of the claim, and for damages for bodily injury or death, to the extent that all such damages are determined by a court
of competent jurisdiction to have been directly caused by a defective Agilent product.

9. TO THE EXTENT ALLOWED BY LOCAL LAW, THE REMEDIES IN THIS WARRANTY STATEMENT ARE CUSTOMER’S
SOLE AND EXLUSIVE REMEDIES. EXCEPT AS INDICATED ABOVE, IN NO EVENT WILL AGILENT OR ITS SUPPLIERS BE
LIABLE FOR LOSS OF DATA OR FOR DIRECT, SPECIAL, INCIDENTAL, CONSEQUENTIAL (INCLUDING LOST PROFIT OR
DATA), OR OTHER DAMAGE, WHETHER BASED IN CONTRACT, TORT, OR OTHERWISE.

FOR CONSUMER TRANSACTIONS IN AUSTRALIA AND NEW ZEALAND: THE WARRANTY TERMS CONTAINED IN THIS
STATEMENT, EXCEPT TO THE EXTENT LAWFULLY PERMITTED, DO NOT EXCLUDE, RESTRICT OR MODIFY AND ARE
IN ADDITION TO THE MANDATORY STATUTORY RIGHTS APPLICABLE TO THE SALE OF THIS PRODUCT TO YOU.

U.S. Government Restricted Rights

The Software and Documentation have been developed entirely at private expense. They are delivered and licensed as "commercial
computer software" as defined in DFARS 252.227- 7013 (Oct 1988), DFARS 252.211-7015 (May 1991) or DFARS 252.227-7014 (Jun
1995), as a "commercial item" as defined in FAR 2.101(a), or as "Restricted computer software" as defined in FAR 52.227-19 (Jun
1987)(or any equivalent agency regulation or contract clause), whichever is applicable. You have only those rights provided for such
Software and Documentation by the applicable FAR or DFARS clause or the Agilent standard software agreement for the product
involved.

 E8480A High Power General Purpose Switch Module User’s Manual
Edition 1

Copyright © 2001 Agilent Technologies, Inc. All rights reserved.
7

Safety Symbols
Instruction manual symbol affixed to
product. Indicates that the user must refer to
the manual for specific WARNING or
CAUTION information to avoid personal
injury or damage to the product.

Alternating current (AC)
Instruction manual symbol affixed to
product. Indicates that the user must refer to
the manual for specific WARNING or
CAUTION information to avoid personal
injury or damage to the product.

Indicates the field wiring terminal that must
be connected to earth ground before
operating the equipment — protects against
electrical shock in case of fault.

Direct current (DC).

Warning. Risk of electrical shock.

or
Frame or chassis ground terminal—typically
connects to the equipment's metal frame.

WARNING Calls attention to a procedure, practice, or
condition that could cause bodily injury or
death.

CAUTION
Calls attention to a procedure, practice, or
condition that could possibly cause damage to
equipment or permanent loss of data.

WARNINGS

The following general safety precautions must be observed during all phases of operation, service, and repair of this product. Failure to
comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and
intended use of the product. Agilent Technologies assumes no liability for the customer's failure to comply with these requirements.

Ground the equipment: For Safety Class 1 equipment (equipment having a protective earth terminal), an uninterruptible safety earth
ground must be provided from the mains power source to the product input wiring terminals or supplied power cable.

DO NOT operate the product in an explosive atmosphere or in the presence of flammable gases or fumes.

For continued protection against fire, replace the line fuse(s) only with fuse(s) of the same voltage and current rating and type. DO NOT
use repaired fuses or short-circuited fuse holders.

Keep away from live circuits: Operating personnel must not remove equipment covers or shields. Procedures involving the removal of
covers or shields are for use by service-trained personnel only. Under certain conditions, dangerous voltages may exist even with the
equipment switched off. To avoid dangerous electrical shock, DO NOT perform procedures involving cover or shield removal unless you
are qualified to do so.

DO NOT operate damaged equipment: Whenever it is possible that the safety protection features built into this product have been
impaired, either through physical damage, excessive moisture, or any other reason, REMOVE POWER and do not use the product until
safe operation can be verified by service-trained personnel. If necessary, return the product to Agilent for service and repair to ensure that
safety features are maintained.

DO NOT service or adjust alone: Do not attempt internal service or adjustment unless another person, capable of rendering first aid and
resuscitation, is present.

DO NOT substitute parts or modify equipment: Because of the danger of introducing additional hazards, do not install substitute parts
or perform any unauthorized modification to the product. Return the product to Agilent for service and repair to ensure that safety features
are maintained.

Documentation History

All Editions and Updates of this manual and their creation date are listed below. The first Edition of the manual is Edition 1. The Edition
number increments by 1 whenever the manual is revised. Updates, which are issued between Editions, contain replacement pages to
correct or add additional information to the current Edition of the manual. Whenever a new Edition is created, it will contain all of the
Update information for the previous Edition. Each new Edition or Update also includes a revised copy of this documentation history page.

Edition 1 . March, 2001
8

 Manufacturer’s Name: Agilent Technologies, Inc.
 Manufacturer’s Address: Basic, Emerging and Systems Technologies Product Generation Unit

815 14th Street S.W.
 Loveland, CO 80537 USA

 Declares, that the product

Product Name: High Power General Purpose Switch Module
Model Number: E8480A
Product Options: This declaration includes all options of the above product(s).

 Conforms with the following European Directives:
 The product herewith complies with the requirements of the Low Voltage Directive 73/23/EEC and the EMC Directive 89/336/EEC
 and carries the CE Marking accordingly.

 Conforms with the following product standards:

 EMC Standard Limit
IEC 61326-1:1997 + A1:1998 / EN 61326-1:1997 + A1:1998

 CISPR 11:1997 + A1:1997 / EN 55011-1991 Group 1, Class A [1]
 IEC 61000-4-2:1995+A1998 / EN 61000-4-2:1995 4 kV CD, 8 kV AD
 IEC 61000-4-3:1995 / EN 61000-4-3:1995 3 V/m, 80-1000 MHz
 IEC 61000-4-4:1995 / EN 61000-4-4:1995 0.5 kV signal lines, 1 kV power lines
 IEC 61000-4-5:1995 / EN 61000-4-5:1995 0.5 kV line-line, 1 kV line-ground
 IEC 61000-4-6:1996 / EN 61000-4-6:1996 3 V, 0.15-80 MHz
 IEC 61000-4-11:1994 / EN 61000-4-11:1994 1 cycle, 100%

 Canada: ICES-001:1998
 Australia/New Zealand: AS/NZS 2064.1

 Safety IEC 61010-1:1990+A1:1992+A2:1995 / EN 61010-1:1993+A2:1995
Canada: CSA C22.2 No. 1010.1:1992
UL 3111-1

 Supplemental Information:

 [1] The product was tested in a typical configuration with Agilent Technologies test systems.

 For further information, please contact your local Agilent Technologies sales office, agent or distributor.
Authorized EU-representative: Agilent Technologies Deutschland GmbH, Herrenberger Straβe 130, D 71034 Böblingen, Germany

Revision: A.03 Issue Date: 09/05/00

September 5, 2000

Date Name

Quality Manager

Title

DECLARATION OF CONFORMITY
According to ISO/IEC Guide 22 and CEN/CENELEC EN 45014
9

Notes:
10

Chapter 1

Getting Started

About This Chapter
This chapter describes the Agilent E8480A 40-Channel High Power General
Purpose (GP) Switch module, contains information on how to program it
using SCPI (Standard Commands for Programmable Instruments)
commands, and provides an example program to check initial operation.
Chapter contents include:

• Agilent E8480A Module Description 11
• Instrument Definition . 13
• Programming the Module . 13
• Initial Operation . 15

Agilent E8480A Module Description
The Agilent E8480A 40-Channel High Power General Purpose Switch
Module is a single-slot VXIbus C-Size register-based product which can
operate in a C-Size VXIbus mainframe. It is ideal for switching and routing
high-current sources such as AC and DC power supplies in the automated
test systems.

For the General Purpose Switch module, switching consists of opening or
closing a channel relay to provide alternate connections to user devices.
Scanning consists of closing a set of channel relays, one at a time.

Basic Operation As shown in Figure 1-1, the E8480A module consists of 40 channels
(channels 00 through 39). Each channel uses a non-latching Form A relay.
Signals are switched by opening or closing the appropriate channel relays.
At power-on, power-off, or reset, all channels of the module are open. User
inputs and outputs to each channel are made via the connectors (J1, J2, and
J3) on the module’s front panel. See “Connecting Field Wiring to the
Module” on page 20 for more information.

In addition, to get the full life of the relays, varistors can be mounted onto
the module’s PC board for relay protection. The "Emergency Reset" port on
the module’s front panel provides an easy way to allow user to take
immediate action for relay protection in case of an emergency. See
“Protecting Relays and Circuits” on page 23 of this manual for more
information.
Getting Started 11Chapter 1

Figure 1-1. Front Panel and Simplified Schematic of the E8480A

Typical
Configuration

Each relay channel on the E8480A module can accept a maximum current of
12A. The maximum voltage per channel is 150 Vdc or 280 Vac. The
maximum rated power capacity (external load) is 3360 VA or 360 Wdc per
channel.

For a Standard Commands for Programmable Instruments (SCPI)
environment, one or more E8480A modules can be configured as a
switchbox instrument. All modules within the switchbox can be addressed
using a single interface address.

Emergency
 Reset

E8480A

J1

J2

J3

L
H

CH19

L
H

CH20

L

L

L
H

CH01
L
H CH01

H CH19

H CH20

E8480A Switch Module To Connectors (J1-3)

L
H

CH38
L
H CH38

L
H

CH00
L
H CH00

L
H

CH39
L
H CH39

Emergency Reset
 Port

J3

J2

J1
12 Getting Started Chapter 1

Instrument Definition
The plug-in modules installed in an Agilent mainframe or used with an
Agilent command module are treated as independent instruments each
having a unique secondary GPIB address. Each instrument is also assigned
a dedicated error queue, input and output buffers, status registers and, if
applicable, dedicated mainframe/command module memory space for
readings or data. An instrument may be composed of a single plug-in
module (such as a counter) or multiple plug-in modules (for a switchbox or
scanning multimeter instrument).

Programming the Module
To program the module using SCPI commands, you must select the
controller language, interface address, and SCPI commands to be used. See
the C-Size VXIbus System Configuration Guide for detailed interface
addressing and controller language information. For uses in other systems
or mainframes, see the appropriate manuals. For more details of SCPI
commands applicable to the module, refer to Chapter 4 of this manual.

NOTE The module can also be programmed by directly writing to its registers. See
Appendix B for the details on register programming.

Specifying SCPI
Commands

To address specific channels within an E8480A module, you must specify
the appropriate SCPI command and channel addresses. Table 1-1 lists the
most commonly used commands. Refer to Chapter 4 of this manual for a
complete list of SCPI commands applicable to the module.

Channel Addresses Only valid channel addresses can be included in the channel_list. For the
E8480A, the channel address has the form of (@ccnn) where,

cc = card number (01-99)
nn = channel number (00-39)

NOTE Only valid channels can be accessed in a channel list or channel range.
Also, the channel range must be from a lower channel number to a higher
channel number. Otherwise, an error will be generated.

Table 1-1. Commonly Used SCPI Commands

SCPI Commands Commands Description

CLOSe <channel_list> Close (connect) the specified channels.

OPEN <channel_list> Open (disconnect) the specified channels.

SCAN <channel_list> Closes a serials of channels, one at a time.
Getting Started 13Chapter 1

To specify a channel_list, use the form of:

• (@ccnn) for a single channel
• (@ccnn,ccnn) for multiple channels
• (@ccnn:ccnn) for sequential channels
• (@ccnn:ccnn,ccnn:ccnn) for groups of sequential channels
• or any combination of the above.

Channel Number The channel number (nn of the channel_list) identifies which relay on the
selected module will be addressed. The channel numbers of the E8480A
module are 00 through 39.

Card Number The card number (cc of the channel_list) identifies which module within a
switchbox will be addressed. The card number assigned depends on the
switchbox configuration used. Leading zeroes can be ignored for the card
number.

• Single-module Switchbox. In a single-module switchbox
configuration, the card number is always 01.

• Multiple-module Switchbox. In a multiple-module switchbox
configuration, modules are set to successive logical addresses. The
module with the lowest logical address is always card number 01. The
module with the next successive logical address is card number 02,
and so on. Figure 1-2 illustrates the card numbers and logical
addresses of a typical multiple-module switchbox installed in an
Agilent C-Size mainframe with an Agilent command module.

Figure 1-2. Multiple-Module Switchbox Instrument

Multiple-Module Switchbox Card Numbers

Card Number 01

High-Power GP Module
Logical Address = 120
Secondary Address = 15

Card Number 02

High-Power GP Module
Logical Address = 121

Card Number 03

High-Power GP Module
Logical Address = 122

Note: Physical placement of the module in the logical address
 order is not required, but is recommended.

Command
Module
14 Getting Started Chapter 1

Initial Operation
Use the following example programs to perform the initial operation on the
E8480A module. To run the programs, an Agilent E1406A command
module is required. Also, you must download the E8480A SCPI driver into
the E1406A command module and have the Agilent SICL Library, the VISA
extensions, and an Agilent 82350 GPIB card installed and properly
configured in your PC.

In the examples, the computer interfaces to the mainframe via GPIB. The
GPIB interface select code is 7, the GPIB primary address is 09, and the
E8480A module is at logical address 120 (secondary address = 120/8 = 15).
Refer to the Agilent E1406A Command Module User’s Guide for more
addressing information. For more details on the related SCPI commands
used in the examples, see Chapter 4 of this manual.

Example: Closing a
Channel (HTBasic)

This example program was written in HTBasic programming language. The
program closes channel 102 of the module, then queries the channel closure
state. The result is returned to the computer and displayed on the screen
(1 = channel closed, 0 = channel open).

10 DIM Ch_Stat$[20] ! Dimension a variable.
20 OUTPUT 70915; "*RST" ! Resets the module.
30 OUTPUT 70915; "CLOS (@102)" ! Close channel 102.
40 OUTPUT 70915; "CLOS? (@102)" ! Query channel 102 closed

state.
50 ENTER 70915; Ch_Stat$! Enter results into Ch_stat$.
60 PRINT Ch_Stat$! "1" should be displayed.
70 END

Example: Closing a
Channel (C/C++)

This example program was developed and tested in Microsoft® Visual C++
6.0 but should compile under any standard ANSI C compiler. The program
closes channel 102 of the module, then queries the channel closure state. The
result is returned to the computer and displayed on the screen
(1 = channel closed, 0 = channel open).

#include <visa.h>
#include <stdio.h>
#include <stdlib.h>

/* Module logical address is 120, secondary address is 15 */
#define INSTR_ADDR "GPIB0::9::15::INSTR"

int main()
{

ViStatus errStatus; /* Status from each VISA call */
ViSession viRM; /* Resource manager session */
ViSession E8480A; /* Module session */
char state[10]; /* Channel state */
Getting Started 15Chapter 1

/* Open the default resource manager */
errStatus = viOpenDefaultRM (&viRM);
if(VI_SUCCESS > errStatus){

printf("ERROR: viOpenDefaultRM() returned 0x%x\n", errStatus);
return errStatus;}

/* Open the module instrument session */
errStatus = viOpen(viRM,INSTR_ADDR, VI_NULL,VI_NULL,&E8480A);
if(VI_SUCCESS > errStatus){

printf("ERROR: viOpen() returned 0x%x\n", errStatus);
return errStatus;}

/* Reset the module */
errStatus = viPrintf(E8480A, "*RST;*CLS\n");
if(VI_SUCCESS > errStatus){

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Close channel 102 */
errStatus = viPrintf(E8480A, "CLOS (@102)\n");
if(VI_SUCCESS > errStatus){

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Query state of channel 102 */
errStatus = viQueryf(E8480A, "ROUT:CLOS? (@102)\n", "%t", state);
if (VI_SUCCESS > errStatus) {

printf("ERROR: viQueryf() returned 0x%x\n", errStatus);
return errStatus;}

printf("Channel State is: %s\n", state);

/* Close the module instrument session */
errStatus = viClose (E8480A);
if (VI_SUCCESS > errStatus) {

printf("ERROR: viClose() returned 0x%x\n", errStatus);
return 0;}

/* Close the resource manager session */
errStatus = viClose (viRM);
if (VI_SUCCESS > errStatus) {

printf("ERROR: viClose() returned 0x%x\n", errStatus);
return 0;}

return VI_SUCCESS;
}

16 Getting Started Chapter 1

Chapter 2

Configuring the Module

About This Chapter
This chapter shows how to configure the E8480A module for use in a
VXIbus mainframe, install it in a mainframe, as well as how to connect
external wiring to the module. Chapter contents include:

• Warnings and Cautions . 17
• Setting the Address Switch . 18
• Setting the Interrupt Priority . 19
• Connecting Field Wiring to the Module 20
• Protecting Relays and Circuits . 23

Warnings and Cautions

WARNING SHOCK HAZARD. Only qualified, service-trained personnel who
are aware of the hazards involved should install, configure, or
remove the High-Power Switch module. Use only wire rated for
the highest input voltage and disconnect all power sources
from the mainframe and installed modules before installing or
removing a module.

Caution MAXIMUM VOLTAGE/CURRENT. The maximum allowable
voltage per channel for the Switch module is 150 Vdc or
280 Vac rms. The maximum current per channel is 12 Adc or ac
(non-inductive). The maximum rated power capacity (external
load) is 360 Wdc or 3360 VA per channel. Exceeding any limit
may damage the High-Power Switch module.

Caution STATIC ELECTRICITY. Static electricity is a major cause of
component failure. To prevent damage to the electrical
components in the High-Power Switch module, observe
anti-static techniques whenever removing a module from the
mainframe or whenever working on a module. DO NOT install
the Switch module without its metal shield attached.
Configuring the Module 17Chapter 2

Setting the Logical Address
The logical address switch (LADDR) factory setting is 120. Valid address
values are from 1 to 255. Figure 2-1 shows the address switch position and
setting information.

NOTE The address switch selected value must be a multiple of 8 if the module is
the first module in a switchbox used with a VXIbus command module, and
being instructed by SCPI commands.

Figure 2-1. Setting the Logical Address Switch

� � � � � � � �

�

�

� � � 	 �� �� �� ��
	

��
�����������������

	���������������������

/RJLFDO�$GGUHVV
������6ZLWFK
18 Configuring the Module Chapter 2

Setting the Interrupt Priority
The E8480A module generates an interrupt after a channel has been closed.
These interrupts are sent to, and acknowledgments are received from, the
command module (Agilent E1406A) via the VXIbus backplane interrupt
lines.

For most applications, the default interrupt priority line should not have to
be changed. This is because the VXIbus interrupt lines have the same
priority and interrupt priority is established by installing modules in slots
numerically closest to the command module. Thus, slot 1 has a higher
priority than slot 2, slot 2 has a higher priority than slot 3, etc.

By default, the interrupt priority level is Level 1. It can be set to any one of
the VXI backplane lines 1-7 (corresponding to Levels 1-7) either by sending
SCPI or directly writing to the Interrupt Selection Register. Level 1 is the
lowest priority and Level 7 is the highest priority. The interrupt can also be
disabled at power-up, after a SYSRESET, or by sending SCPI or directly
writing to the Status/Control Register. See page 57 of this manual for more
details of the related SCPI commands. For more information about register
writing, see “Register-Based Programming” on page 87 of this manual.

NOTE Changing the interrupt priority level is not recommended. DO NOT change
it unless specially instructed to do so. Refer to the E1406A Command
Module User’s Manual for more details.
Configuring the Module 19Chapter 2

Connecting Field Wiring to the Module
User inputs to each channel are made via the user-supplied connectors which
mates to the connectors (J1, J2, and J3) on the module’s front panel.
Additional accessories, such as cables, contacts and hand tools, are also
required for wiring. The following sections provide the detailed information
on the module’s connectors pinout, the accessories required for user
connection, as well as the procedure on how to connect field wiring to the
module.

Front Panel &
Connectors Pinout

Figure 2-2 shows the front panel of the E8480A module, as well as the
connectors pinout and the corresponding channel numbers.

Figure 2-2. E8480A Module Front Panel and Connectors Pinout

Pin1 CH15_L

CH15_H

CH18_L

CH18_H

CH21_L

CH21H

CH24_L

CH24_H

CH27_L

CH27_HPin10

Pin21 CH17_L

CH17_H

CH20_L

CH20_H

CH23_L

CH23_H

CH26_L

CH26_H

CH29_L

CH29_HPin30

Pin11 CH16_L

CH16_H

CH19_L

CH19_H

CH22_L

CH22_H

CH25_L

CH25_H

CH28_L

CH28_HPin20

Pin1 CH00_L

CH00_H

CH03_L

CH03_H

CH06_L

CH06_H

CH09_L

CH09_H

CH12_L

CH12_HPin10

Pin21 CH02_L

CH02_H

CH05_L

CH05_H

CH08_L

CH08_H

CH11_L

CH11_H

CH14_L

CH14_HPin30

Pin11 CH01_L

CH01_H

CH04_L

CH04_H

CH07_L

CH07_H

CH10_L

CH10_H

CH13_L

CH13_HPin20

Pin1 CH30_L

CH30_H

CH33_L

CH33_H

CH36_L

CH36H

CH39_L

CH39_HPin8

Pin17 CH32_L

CH32_H

CH35_L

CH35_H

CH38_L

CH38_H

N/A

N/APin24

Pin9 CH31_L

CH31_H

CH34_L

CH34_H

CH37_L

CH37_H

N/A

N/APin16

J1

J2

J3

Emergency
 Reset

E8480A

1

1

10

10

1

8

21

30

21

30

17

24
J3

J2

J1

J3

J2

J1
20 Configuring the Module Chapter 2

Accessories for
Wiring

The accessories that are necessary to connect the field wiring are not
supplied with the module but can be ordered either from Agilent or from
Positronic, Inc1. This allows you to purchase the number of connectors,
contacts and tools you require for your application. Refer to Table 2-1 to
order the accessories from Agilent. To purchase these products from
Positronic, refer to Table 2-2 for order information.

NOTE Agilent does not provide the tools (Hand Crimp Tool, Contact Insertion
Tool and Contact Extraction Tool). You should order them from Positronic,
Inc. as required.

1. Contact Positronic, Inc. 423 N. Campbell Ave. P.O. Box 8247, Springfield, MO 65801, U.S.A.
Telephone: 417-866-2322, Fax: 417-866-4115, Toll Free: 800-641-4054.
Email Address: info@positronic.com. Web Site: http://www.positronic.com

Table 2-1. Accessories Ordered from Agilent

Agilent
Part No.

Description

Option 105
Two 30-pin female connectors, each with 30 crimp-and-insert
contacts: Used to accept wires, then directly mating to the
module’s J1 and J2 (30-pin) male connector.

Option 106
One 24-pin female connector with 24 crimp-and-insert
contacts: Used to accept wires, then directly mating to the
module’s J3 (24-pin) male connector.

Table 2-2. Recommended Accessories Ordered from Positronic

Positronic
Part No.

Description

PLC30F7000
30-pin female connector: Used to accept wires, then directly
mating to the module’s J1 or J2 (30-pin) male connector.

PLC24F7000
24-pin female connector: Used to accept wires, then directly
mating to the module’s J3 (24-pin) male connector.

FC112N2
Contacts: Used to accept a wire size up to 12 AWG (4.0 mm2) and
carry a maximum current of 25 A. Wires are crimpt onto it, then
inserted directly into the female connectors.

9501 Hand Crimp Tool - Used to crimp contacts onto wires.

9099
Contact Insertion Tool - Used to insert the contacted wires up to

12 AWG (4.0 mm2) or smaller into the connector.

9081
Contact Extraction Tool - Used to remove the contacts from the
connector.
Configuring the Module 21Chapter 2

Attaching
Connectors to the

Module

Figure 2-3 shows the procedure to connect the field wiring. Use the
guidelines below when making the connections.

• Maximum wire size is 12 AWG. Wire ends should be stripped 5.84 mm
(0.23 inch) and tinned to prevent single strands from shorting to
adjacent terminals.

• The maximum voltage that may be applied to any connector on the
E8480A is 150 Vdc or 280 Vac. The maximum current that may be
applied to any connector is 12 Adc or Aac. The maximum rated power
capacity (external load) is 360 Wdc or 3360 VA per channel.
Exceeding any limit may damage the module.

NOTE We highly recommend to decentralize the channels when carrying high
current. That is, six channels each carrying 12 A should use channels 0, 7,
14, 21, 28 and 35 instead of using channels 0 through 5.

Figure 2-3. Wiring Connections

Stripped Wire (12 AWG) ���� Contact

With a Hand Crimp Tool - 9501 (Positronic
Part No.) or an equivalent tool, crimp a
contact onto one end of a wire.

Step 1: Preparing Wires

Step 3: Attaching Connector to the Module

E8480A Module

 Wired
Connector

With a Contact Insertion Tool - 9099
(Positronic Part No.), insert the contacted
wire into the connector (Opt 105/106).

Step 2: Inserting Wires into Connector

To remove the wire from the connector,
a Contact Extraction Tool-9081 (Positronic
Part No.) Is required.

 Opt 106
Connector

Contacted
 Wire
22 Configuring the Module Chapter 2

Protecting Relays and Circuits
Electromechanical relays are subject to normal wear-out. Relay life depends
on several factors, such as relay loads, switching frequency, etc. See
Appendix D on page 99 of this manual for details. To get the full life of the
relays on the module, some protection circuits are designed on the module.

Adding Varistors When relay contacts open or close, electrical breakdown can occur between
the contacts. This can cause high frequency radiation, voltage and current
surges, and physical damage to the relay contacts, especially when
switching inductive loads.

When shipped from the factory, the E8480A module is not installed with the
varistors. However, spaces have been made on the module’s PC board for
adding varistors for relay protection as required.

To protect the relay (labeled with Kxxx on the board), simply solder a
varistor across the specified pads which are in parallel with the relay and
labeled with RVxxx (xxx is same as the protected relay label). Now as the
voltage goes up, the varistor draws current to protect the relay. Figure 2-4
shows the locations where the varistors can be added.

NOTE Make certain that the selected varistor has a voltage rating sufficient for
your application. We highly recommend to order P/N 0837-0227 for
varistors with 250 VAC and P/N 0837-0507 for varistors with 300 VAC.

Figure 2-4. Adding Varistors for Relay Protection

For example, to protect
relay K337, soldering
a varistor accross
these two pads (RV337).

�� ��
Configuring the Module 23Chapter 2

Emergency Reset In some hazardous cases (for example, the board inside temperature
becomes too high), you may need to instantly open all channel relays and
prevent any operation on the relays of the module. This can be done by
applying a TTL low voltage or a +5V negative-going pulse to the
"Emergency Reset" port (when enabled) on the front panel of the module, as
shown in Figure 2-5.

At power-up or after a reset (*RST), the "Emergency Reset" port is disabled
to accept an external emergency reset signal. You should enable the
"Emergency Reset" port by DIAGnostic:EMERgency:TRIGger:STATe
command as required. When enabled, the "Emergency Reset" port can
accept a TTL low voltage or a +5V negative-going pulse to force the module
to open all channel relays. Furthermore, all relays on the module can not be
operated any more unless the current emergency state is cleared by
DIAGnostic:EMERgency:CLEar command or *RST command. For more
information on the related SCPI commands, see Chapter 4 starting on
page 55 of this manual.

The "Emergency Reset" port can also be enabled or disabled by directly
writing to the Emergency Control Register, see Appendix B starting on
page 96 of this manual for details.

Figure 2-5. Emergency Reset Port of the Module

Emergency Reset
 Port

J1

J2

+5 V
0

+5 V
0 or
24 Configuring the Module Chapter 2

Maximum Allowable
Module Switch

Current

The E8480A has an individual channel current specification of 12 A.
However, if you apply the 12 A to all the channels with a relay contact
resistance of 0.1Ω, the power dissipation would be 576 W. Since the
E8404A mainframe can only provide cooling for 100W per slot (keeps the
temperature rise to 15oC), this cannot be allowed to happen.

A reasonable currents and combination of channels for the entire module is
shown in Figure 2-6. For example, six channels each carrying 12 A will
produce about 86.5 W of internal dissipation, leading to a 15oC temperature
rise. Figure 2-6 shows how to derate the channels, in terms of current
throughout the channels, to keep internal power dissipation under 86.5W or
15oC temperature rise.

NOTE We highly recommend to decentralize the channels when carrying high
current. That is, six channels each carrying 12 A should use channels 0, 7,
14, 21, 28 and 35 instead of using channels 0 through 5.

Figure 2-6. Allowable Switch Current

Agilent E8404A Mainframe and
0.1 Ohm Relay Contact Resistance

0

1

2

3

4

5

6

7

8

9

10

11

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

No. of Switches Carrying Current

C
u
r
r
e
n
t

P
e
r

S
w
i
t
c
h

-
-

A
M
P
S

86.5 Watt MF Diss
Configuring the Module 25Chapter 2

Notes:
26 Configuring the Module Chapter 2

Chapter 3

Using the Module

About This Chapter
This chapter uses typical examples to show how to use the E8480A module.
See Chapter 4, "Command Reference" for the details of related commands
used in this chapter. Chapter contents are:

• Module Commands Summary . 28
• Power-On and Reset Conditions . 28
• Module Identification . 29
• Switching Channels. 31
• Scanning Channels Using Trig In/Out Ports 33
• Scanning Channels Using TTL Trigger 38
• Using the Scan Complete Bit . 43
• Recalling and Saving States . 46
• Querying the Module . 47
• Detecting Error Conditions . 47
• Synchronizing the Module . 48

All example programs in this chapter were developed on an external PC
using HTBasic or Visual C/C++ as the programming language. They are
tested with the following system configuration:

• An E1406A command module and an E8480A High Power General
Purpose Switch module are installed in the mainframe.

• The computer is connected to the E1406A command module via GPIB
interface. The GPIB select code is 7, the GPIB primary address is 09,
and the E8480A module is at logical address 120 (secondary address =
120/8 = 15).

• The E8480A SCPI driver had been downloaded into the E1406A
command module.

• The SICL Library, the VISA extensions, and an Agilent 82350 GPIB
module had been installed and properly configured in the computer.

Refer to the Agilent E1406A Command Module User’s Guide for more
addressing information. For more details on the related SCPI commands
used in this chapter, see Chapter 4 of this manual.

NOTE Do not do register writes if you are controlling the module by a high level
driver such as SCPI or VXIplug&play. This is because the driver will not
know the module state and an interrupt may occur causing the driver
and/or command module to fail.
Using the Module 27Chapter 3

Module Commands Summary
Table 3-1 explains some of the SCPI commands used in this chapter. Refer
to Chapter 4 for more information on these commands.

Power-On and Reset Conditions
At power-on or following a reset (*RST command), all channels of the
module are open. The *RST command also invalidates the current scan list
(that is, you must specify a new scan list for scanning). Command
parameters are set to the default conditions as shown in Table 3-2.

Table 3-1. Commonly Used Commands

Commands Description

[ROUTe:]CLOSe <channel_list>

[ROUTe:]CLOSe? <channel_list>

[ROUTe:]OPEN <channel_list>

[ROUTe:]OPEN? <channel_list>

[ROUTe:]SCAN <channel_list>

INITiate[:IMMediate]

TRIGger:SOURce <source>

Close the channels in the channel list.

Query the state of the channels in the channel list.

Open the channels in the channel list.

Query the state of the channels in the channel list.

Define the channel list to be scanned. Channels
specified are closed one at a time.

Start the scan sequence and close the first channel in
the channel list.

Select the trigger source to advance the scan.

Table 3-2. *RST Default Conditions

Parameter Default Description

ARM:COUNt

DIAGnostic:EMERgency:TRIGger:STATe

TRIGger:SOURce

INITiate:CONTinuous

OUTPut:ECLTrgn[:STATe]

OUTPut[:EXTernal][:STATe]

OUTPut:TTLTrgn[:STATe]

1

OFF

IMM

OFF

OFF

OFF

OFF

Number of scanning cycles is 1.

"Emergency Reset" port is disabled.

Advances through a scanning list automatically.

Continuous scanning is disabled.

Trigger output from ECL trigger line is disabled.

Trigger output from "Trig Out" port is disabled.

Trigger output from TTL trigger line is disabled.
28 Using the Module Chapter 3

Module Identification
The following example programs use the *RST, *CLS, *IDN?,
SYST:CTYP?, and SYST:CDES? commands to reset and identify the
module.

Example:
Identifying Module

(HTBasic)

10 DIM A$[50], B$[50], C$[50] ! Dimension three string
variables to fifty characters.

20 OUTPUT 70915; "*RST; *CLS" ! Reset the module and clear
Status Register.

30 OUTPUT 70915; "*IDN?" ! Query for module
identification.

40 ENTER 70915; A$! Enter the result into A$.

50 OUTPUT 70915; "SYST:CDES? 1" ! Query for module description.
60 ENTER 70915; B$! Enter the result into B$.

70 OUTPUT 70915; "SYST:CTYP? 1" ! Query for module type.
80 ENTER 70915; C$! Enter the result into C$

90 PRINT A$, B$, C$! Print the contents of the
variable A$, B$ and C$.

100 END

Example:
Identifying Module

(C/C++)

#include <visa.h>
#include <stdio.h>
#include <stdlib.h>

/* Module logical address is 120, secondary address is 15 */
#define INSTR_ADDR "GPIB0::9::15::INSTR"

int main()
{

ViStatus errStatus; /* Status from each VISA call */
ViSession viRM; /* Resource manager session */
ViSession E8480A; /* Module session */
char id_string[256]; /* ID string */
char m_desp[256]; /* Module description */
char m_type[256]; /* Module type */

/* Open the default resource manager */
errStatus = viOpenDefaultRM (&viRM);
if(VI_SUCCESS > errStatus){

printf("ERROR: viOpenDefaultRM() returned 0x%x\n", errStatus);
return errStatus;}

/* Open the module instrument session */
errStatus = viOpen(viRM,INSTR_ADDR, VI_NULL,VI_NULL,&E8480A);
if(VI_SUCCESS > errStatus){

printf("ERROR: viOpen() returned 0x%x\n", errStatus);
return errStatus;}
Using the Module 29Chapter 3

/* Reset the module and clear the status registers */
errStatus = viPrintf(E8480A, "*RST;*CLS\n");
if(VI_SUCCESS > errStatus){

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Query the module ID string */
errStatus = viQueryf(E8480A, "*IDN?\n", "%t", id_string);
if (VI_SUCCESS > errStatus) {

printf("ERROR: viQueryf() returned 0x%x\n", errStatus);
return errStatus;}

printf("ID is %s\n", id_string);

/* Query the module description */
errStatus = viQueryf(E8480A, "SYST:CDES? 1\n", "%t", m_desp);
if (VI_SUCCESS > errStatus) {

printf("ERROR: viQueryf() returned 0x%x\n", errStatus);
return errStatus;}

printf("Module Description is %s\n", m_desp);

/* Query the module type */
errStatus = viQueryf(E8480A, "SYST:CTYP? 1\n", "%t", m_type);
if (VI_SUCCESS > errStatus) {

printf("ERROR: viQueryf() returned 0x%x\n", errStatus);
return errStatus;}

printf("Module Type is %s\n", m_type);

/* Close the module instrument session */
errStatus = viClose (E8480A);
if (VI_SUCCESS > errStatus) {

printf("ERROR: viClose() returned 0x%x\n", errStatus);
return 0;}

/* Close the resource manager session */
errStatus = viClose (viRM);
if (VI_SUCCESS > errStatus) {

printf("ERROR: viClose() returned 0x%x\n", errStatus);
return 0;}

return VI_SUCCESS;
}

30 Using the Module Chapter 3

Switching Channels
One primary use of the E8480A High Power General Purpose Switch
module is to switch and route high-current sources such as AC and DC
power supplies in an automated test system. Use CLOSe <channel_list> to
close the channel relays, or use OPEN <channel_list> to open the channel
relays. The channel_list has the form of:

• (@ccnn) for a single channel
• (@ccnn,ccnn) for multiple channels
• (@ccnn:ccnn) for sequential channels
• (@ccnn:ccnn,ccnn:ccnn) for groups of sequential channels
• or any combination of the above.

where cc = card number (01-99) and nn = channel number (00-39).

Figure 3-1 shows a typical general purpose relay configuration for voltage
switching. When the channel 00 relay is closed, the power supply voltage is
applied to Device Under Test 1 (DUT-1). When the channel 02 relay is
closed, the voltage is applied to Device Under Test 2 (DUT-2).

Figure 3-1. Voltage Switching

The following example programs were written in HTBasic and C/C++
programming languages respectively. In the example, it will close channels
00 and 02 to apply the external power supply to both devices (DUT-1 and
DUT-2), then query to see whether they are closed. The result is returned to
the computer and displayed (1 = channel closed, 0 = channel open).

�	�	�����
������� ��

 External
24V Power Supply

+ -

 Device
Under Test 2

 Device
Under Test 1

CH02

CH01

CH00

J1
Using the Module 31Chapter 3

Example: Closing
Multiple Channels

(HTBasic)

10 DIM A$[20] ! Dimension a string variable to
twenty characters.

20 OUTPUT 70915; "*RST; *CLS" ! Reset the module and clear
Status Register.

30 OUTPUT 70915; "ROUT:CLOS (@100,102)"
! Close channels 100 and 102.

40 OUTPUT 70915; "ROUT:CLOS? (@100,102)"
! Query closure state of channels

100 and 102.
50 ENTER 70915; A$! Enter the result into A$.
60 PRINT A$! "1,1" returned indicates they

are closed.
70 END

Example: Closing
Multiple Channels

(C/C++)

#include <visa.h>
#include <stdio.h>
#include <stdlib.h>

/* Module logical address is 120, secondary address is 15 */
#define INSTR_ADDR "GPIB0::9::15::INSTR"

int main()
{

ViStatus errStatus; /* Status from each VISA call */
ViSession viRM; /* Resource manager session */
ViSession E8480A; /* Module session */
char stat[20]; /* channel states*/

/* Open the default resource manager */
errStatus = viOpenDefaultRM (&viRM);
if(VI_SUCCESS > errStatus){

printf("ERROR: viOpenDefaultRM() returned 0x%x\n", errStatus);
return errStatus;}

/* Open the module instrument session */
errStatus = viOpen(viRM,INSTR_ADDR, VI_NULL,VI_NULL,&E8480A);
if(VI_SUCCESS > errStatus){

printf("ERROR: viOpen() returned 0x%x\n", errStatus);
return errStatus;}

/* Reset the module and clear status registers*/
errStatus = viPrintf(E8480A, "*RST;*CLS\n");
if(VI_SUCCESS > errStatus){

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Close channels 00 and 02 */
errStatus = viPrintf(E8480A, "CLOS (@100,102)\n");
if(VI_SUCCESS > errStatus){

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}
32 Using the Module Chapter 3

/* Query channels 00 and 02 closure state */
errStatus = viQueryf(E8480A, "ROUT:CLOS? (@100,102)\n", "%t", stat);
if (VI_SUCCESS > errStatus) {

printf("ERROR: viQueryf() returned 0x%x\n", errStatus);
return errStatus;}

printf("The states of channels 00 and 02 are: %s\n", stat);

/* Close the module instrument session */
errStatus = viClose (E8480A);
if (VI_SUCCESS > errStatus) {

printf("ERROR: viClose() returned 0x%x\n", errStatus);
return 0;}

/* Close the resource manager session */
errStatus = viClose (viRM);
if (VI_SUCCESS > errStatus) {

printf("ERROR: viClose() returned 0x%x\n", errStatus);
return 0;}

return VI_SUCCESS;
}

Scanning Channels
For the E8480A module, scanning channels consists of closing a specified
set of channels, one at a time. You can scan any combination of channels for
a single-module or a multiple-module switchbox. Single, multiple, or
continuous scanning modes are available.

For multiple-module switchbox, the channels to be scanned can extend
across switch modules. For example, for a two-module switchbox
instrument, SCAN(@100:239) will scan all channels of both modules.

Use TRIGger:SOURce command to specify the source to advance the scan.
Use OUTPut subsystem commands to select the E1406A command module
Trig Out port, or ECL Trigger bus lines (0-1), or TTL Trigger bus lines (0-7).
Use ARM:COUNt <number> to set multiple/continuous scans (from 1 to
32,767 scans). Use INITiate:CONTinuous ON to set continuous scanning.
See Chapter 4 of this manual for information about these SCPI commands.

Example: Scanning
Channels Using
Trig In/Out Ports

This example uses E1406A command module’s "Trig In" and "Trig Out"
ports to synchronize E8480A module channel closures with an external
measurement multimeter (Agilent 34401A). See Figure 3-2 for typical user
connections. For measurement synchronization:

-- E1406A’s Trig Out port (connected to the 34401A multimeter’s
External Trigger port) is used by the E8480A module to trigger the
multimeter to perform a measurement.

-- E1406A’s Trig In port (connected to the 34401A multimeter’s
Voltmeter Complete port) is used by the multimeter to advance the
E8480A channel to scan.
Using the Module 33Chapter 3

For this example, the Low (L) contacts of channels 00-09 are connected to
the different DUTs (devices under test). The High (H) contacts of channels
00-09 are connected together to the multimeter’s measurement input. These
channels are then scanned and different DUTs are switched in for a
measurement.

Figure 3-2. Scanning Channels using Trig In/out Ports

Programming with
HTBasic

The following HTBasic program sets up the external multimeter (Agilent
34401A) to scan making DC voltage measurements. The E8480A switch
module has a logical address 120 (secondary address 15), and the external
multimeter has an address of 722.

10 DIM Rdgs(1:10) ! Dimension a variable to store
readings.

20 OUTPUT 722; "*RST;*CLS" ! Reset the dmm and clear its
status registers.

30 OUTPUT 70915; "*RST;*CLS" ! Reset the switch module and
clear its status registers.

40 OUTPUT 722; "CONF:VOLT:DC 12" ! Set the dmm for DCV
measurement, 12 V maximum.

50 OUTPUT 722; "TRIG:SOUR EXT" ! Set the dmm trigger source to
EXTernal triggering.

60 OUTPUT 722; "TRIG:COUN 10" ! Set the dmm trigger count
to 10.

70 OUTPUT 722; "INIT" ! Set the dmm to the
wait-for-trigger state.

80 WAIT 1 ! Wait for 1 second.

90 OUTPUT 70915; "OUTP ON" ! Set the switch module output
pulses on E1406A "Trig Out"
port when channel closed.

VM Comp Ext Trig

Agilent 34401A Multimeter (from rear view)

HI (CH 00-09)

 E1406A
Command Module

 E8480A
Switch Module

Trig In

Trig Out
34 Using the Module Chapter 3

100 OUTPUT 70915; "TRIG:SOUR EXT" ! Set the switch module trigger
source to external triggering.

110 OUTPUT 70915; "SCAN (@100:109)" ! Define channel list (00-09) for
scanning.

120 OUTPUT 70915; "INIT" ! Start scan and close channel
100.

130 OUTPUT 722; "FETCH?" ! Read measurement results
from the dmm.

140 ENTER 722; Rdgs(*) ! Enter measurement results.
150 PRINT Rdgs(*) ! Display measurement results.
160 END

Programming with C/C++ The following program was written and tested in Microsoft® Visual C++
using the VISA extensions but should compile under any standard ANSI C
compiler. This example configures the external multimeter (Agilent
34401A) to scan making DC voltage measurements.

#include <visa.h>
#include <stdio.h>
#include <stdlib.h>

/* Module logical address is 120, secondary address is 15 */
#define INSTR_ADDR "GPIB0::9::15::INSTR"

/* Interface address for 34401A Multimeter */
#define MULTI_ADDR "GPIB0::22::INSTR"

int main()
{

ViStatus errStatus; /* Status from each VISA call */
ViSession viRM; /* Resource manager session */
ViSession E8480A; /* Module session */
ViSession dmm; /* Multimeter session */
int loop; /* loop counter */
int opc_int; /* OPC? variable */
double readings [10]; /* Reading Storage */

/* Open the default resource manager */
errStatus = viOpenDefaultRM (&viRM);
if(VI_SUCCESS > errStatus){

printf("ERROR: viOpenDefaultRM() returned 0x%x\n", errStatus);
return errStatus;}

/* Open the switch module instrument session */
errStatus = viOpen(viRM,INSTR_ADDR,VI_NULL,VI_NULL,&E8480A);
if(VI_SUCCESS > errStatus){

printf("ERROR: viOpen() returned 0x%x\n", errStatus);
return errStatus;}

/* Open the multimeter instrument session */
errStatus = viOpen(viRM,MULTI_ADDR,VI_NULL,VI_NULL,&dmm);
if(VI_SUCCESS > errStatus){

printf("ERROR: viOpen() returned 0x%x\n", errStatus);
return errStatus;}
Using the Module 35Chapter 3

/* Set timeout value for multimeter and switch module */
viSetAttribute (dmm,VI_ATTR_TMO_VALUE,1000000);
viSetAttribute (E8480A,VI_ATTR_TMO_VALUE,1000000);

/* Reset the multimeter and clear its status registers */
errStatus = viPrintf(dmm, "*RST;*CLS\n");
if(VI_SUCCESS > errStatus){

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Configure dmm for DCV measurements, 12V maximum */
errStatus = viPrintf(dmm, "CONF:VOLT:DC 12\n");
if(VI_SUCCESS > errStatus){

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Set multimeter trigger source to EXTernal */
errStatus = viPrintf(dmm, "TRIG:SOUR EXT\n");
if(VI_SUCCESS > errStatus){

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Set trigger count to 10 */
errStatus = viPrintf(dmm, "TRIG:COUN 10\n");
if(VI_SUCCESS > errStatus){

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Initialize multimeter, wait for triggering */
errStatus = viPrintf(dmm, "INIT\n");
if(VI_SUCCESS > errStatus){

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* The dmm requires about 20 ms to change to wait-for-trigger state*/
_sleep(1000);

/* Reset the switch module and clear its status registers */
errStatus = viPrintf(E8480A, "*RST;*CLS\n");
if (VI_SUCCESS > errStatus) {

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Enable the switch module output pulses on E1406A "Trig Out" port */
/* when a channel is closed */

errStatus = viPrintf(E8480A, "OUTP ON\n");
if(VI_SUCCESS > errStatus){

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}
36 Using the Module Chapter 3

/* Set switch module trigger source to EXTernal */
errStatus = viPrintf(E8480A, "TRIG:SOUR EXT\n");
if(VI_SUCCESS > errStatus){

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Set up a scan list: channels 100 through 109*/
errStatus = viPrintf(E8480A, "SCAN (@100:109)\n");
if(VI_SUCCESS > errStatus){

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Pause until ready */
errStatus = viQueryf(E8480A, "*OPC?\n", "%t", &opc_int);
if(VI_SUCCESS > errStatus){

printf("ERROR: viQueryf() returned 0x%x\n", errStatus);
return errStatus;}

/* Start scan and close channel 100*/
errStatus = viPrintf(E8480A, "INIT\n");
if(VI_SUCCESS > errStatus){

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Wait for scan to complete */
errStatus = viPrintf(E8480A, "STAT:OPER:ENAB 256\n");
if(VI_SUCCESS > errStatus){

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

for (; ;){
errStatus = viQueryf(E8480A, "*STB?\n", "%d", &opc_int);
if (opc_int&0x80)
 break;}

printf("Scan has completed!\n");

/* Get readings from multimeter */
errStatus = viQueryf(dmm, "FETC?\n", "%,10lf", readings);
if(VI_SUCCESS > errStatus){

printf("ERROR: viQueryf() returned 0x%x\n", errStatus);
return errStatus;}

/* Display the measurement results */
for (loop=0;loop<10;loop++) {

printf ("Reading %d is: %lf\n", loop, readings[loop]); }

/* Close the E8480A instrument session */
errStatus = viClose (E8480A);
if (VI_SUCCESS > errStatus) {

printf("ERROR: viClose() returned 0x%x\n", errStatus);
return 0;}
Using the Module 37Chapter 3

/* Close the multimeter instrument session */
errStatus = viClose (dmm);
if (VI_SUCCESS > errStatus) {

printf("ERROR: viClose() returned 0x%x\n", errStatus);
return 0;}

/* Close the resource manager session */
errStatus = viClose (viRM);
if (VI_SUCCESS > errStatus) {

printf("ERROR: viClose() returned 0x%x\n", errStatus);
return 0;}

return VI_SUCCESS;
}

Example: Scanning
Channels Using

TTL Trigger

This example uses E1406A command module’s TTL trigger bus lines to
synchronize E8480A channel closures with a system multimeter (Agilent
E1412A). See Figure 3-3 for typical user connections. For measurement
synchronization:

-- E1406A’s TTL trigger bus line 0 is used by the E8480A module to
trigger the multimeter to perform a measurement.

-- E1406A’s TTL trigger bus line 1 is used by the multimeter to
advance the E8480A channel to scan.

Figure 3-3. Scanning Using TTL Trigger Bus Lines

 E8480A
Switch Module E1406A

Command Module
 E1412A
Multimeter Module

Connect HI contacts of CH00-09 together
to the HI input of E1412A for measurement
38 Using the Module Chapter 3

Figure 3-3 shows how to connect the switch module to the E1412A
multimeter module.The connections shown with dotted lines are not actual
hardware connections. These connections indicate how the E1406A
firmware operates to accomplish the triggering. For this example, the Low
(L) contacts of channels 00-09 are connected to the different DUTs. The
High (H) contacts of channels 00-09 are connected together, and the
measurements are taken from them. These channels are then scanned and
different DUTs are switched in for a measurement.

Programming with
HTBasic

This example program was written in HTBasic programming language. It
configures the multimeter (E1412A) for DC voltage measurements, sets the
switch module to scan channels 00 through 09. The E1412A multimeter has
a GPIB address of 70903 and the switch module has a logical address of 120
(GPIB address of 70915).

10 DIM Rdgs(1:10) ! Dimension a variable to
store readings.

20 OUTPUT 70903; "*RST;*CLS" ! Reset the dmm and clear its
status registers.

30 OUTPUT 70915; "*RST;*CLS" ! Reset the switch module and
clear its status registers.

40 OUTPUT 70903; "CONF:VOLT 12,MIN" ! Set the dmm for DCV
measurement, 12 V maximum,
min resolution.

50 OUTPUT 70903; "OUTP:TTLT1:STAT ON"
! Set the dmm pulses TTL trigger

line 1 on measurement
complete.

60 OUTPUT 70903; "TRIG:SOUR TTLT0" ! Set the dmm to be triggered by
TTL trigger line 0.

70 OUTPUT 70903; "TRIG:DEL 0.01" ! Set the dmm trigger delay time
to 10 ms

80 OUTPUT 70903; "TRIG:COUN 10" ! Set the dmm trigger count
to 10.

90 OUTPUT 70903; "*OPC?" ! Check to see if dmm ready
100 ENTER 70903; Check
110 OUTPUT 70903; "INIT" ! Set the dmm to the

wait-for-trigger state.

120 OUTPUT 70915; "OUTP:TTLT0:STAT ON"
! Set the switch module pulses

TTL trigger line 0 on channel
closed.

130 OUTPUT 70915; "TRIG:SOUR TTLT1" ! Set the switch module to be
triggered by TTL trigger
line 1.

140 OUTPUT 70915; "SCAN (@100:109)" ! Define channels 00-09 for
scanning.

150 OUTPUT 70915; "INIT" ! Initialize scan and close
channel 100.

160 OUTPUT 70903; "FETCH?" ! Read measurement results
from the dmm.

170 ENTER 70903; Rdgs(*) ! Enter measurement results.
180 PRINT Rdgs(*) ! Display measurement results.
190 END
Using the Module 39Chapter 3

Programming with C/C++ The following program was written and tested in Microsoft® Visual C++
using the VISA extensions but should compile under any standard ANSI C
compiler. This example configures the multimeter for DC voltage
measurements, sets the switch module to scan channels 00 through 09.

#include <visa.h>
#include <stdio.h>
#include <stdlib.h>

/* Switch module logical address is 120, secondary address is 15 */
#define INSTR_ADDR "GPIB0::9::15::INSTR"

/* Interface address for E1412 Multimeter */
#define MULTI_ADDR "GPIB0::9::3::INSTR"

int main()
{

ViStatus errStatus; /* Status from each VISA call*/
ViSession viRM; /* Resource manager session */
ViSession E8480A; /* Module session */
ViSession E1412A; /* Multimeter session */
int loop; /* loop counter */
char opc_int[21]; /* OPC? variable */
double readings [10]; /* Reading Storage*/

/* Open the default resource manager */
errStatus = viOpenDefaultRM (&viRM);
if(VI_SUCCESS > errStatus){

printf("ERROR: viOpenDefaultRM() returned 0x%x\n", errStatus);
return errStatus;}

/* Open the switch module instrument session */
errStatus = viOpen(viRM,INSTR_ADDR, VI_NULL,VI_NULL, &E8480A);
if(VI_SUCCESS > errStatus){

printf("ERROR: viOpen() returned 0x%x\n", errStatus);
return errStatus;}

/* Open the multimeter instrument session */
errStatus = viOpen(viRM,MULTI_ADDR, VI_NULL,VI_NULL, &E1412A);
if(VI_SUCCESS > errStatus){

printf("ERROR: viOpen() returned 0x%x\n", errStatus);
return errStatus;}

/* Set timeout value for multimeter and switch module */
viSetAttribute (E1412A, VI_ATTR_TMO_VALUE, 1000000);
viSetAttribute (E8480A, VI_ATTR_TMO_VALUE, 1000000);

/* Reset the multimeter, clear status registers */
errStatus = viPrintf(E1412A, "*RST;*CLS\n");
if(VI_SUCCESS > errStatus){

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}
40 Using the Module Chapter 3

/* Configure multimeter for DCV measurements, 12V max, min resolution */
errStatus = viPrintf(E1412A, "CONF:VOLT 12,MIN\n");
if(VI_SUCCESS > errStatus){

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Set multimeter to be triggered by TTL trigger line 0 */
errStatus = viPrintf(E1412A, "TRIG:SOUR:TTLT0\n");
if(VI_SUCCESS > errStatus){

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Enable the E1412A pulses TTL trigger line 1 on measurement complete */
errStatus = viPrintf(E1412A, "OUTP:TTLT1 ON\n");
if(VI_SUCCESS > errStatus){

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Set trigger delay time to 1 ms, trigger count to 10 */
errStatus = viPrintf(E1412A, "TRIG:DEL 0.001;COUN 10\n");
if(VI_SUCCESS > errStatus){

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Pause until multimeter is ready */
errStatus = viQueryf(E1412A, "*OPC?\n", "%t", opc_int);
if(VI_SUCCESS > errStatus){

printf("ERROR: viQueryf() returned 0x%x\n", errStatus);
return errStatus;}

/* Initialize multimeter, wait for trigger */
errStatus = viPrintf(E1412A, "INIT\n");
if(VI_SUCCESS > errStatus){

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Reset the switch module, clear the status registers */
errStatus = viPrintf(E8480A, "*RST;*CLS\n");
if (VI_SUCCESS > errStatus) {

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Set the switch module pulses TTL Trigger line 0 on channel closed */
errStatus = viPrintf(E8480A, "OUTP:TTLT0 ON\n");
if(VI_SUCCESS > errStatus){

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}
Using the Module 41Chapter 3

/* Set the switch module pulses TTL Trigger line 0 on channel closed */
errStatus = viPrintf(E8480A, "TRIG:SOUR TTLT1\n");
if(VI_SUCCESS > errStatus){

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Set up a scan list: channels 00 through 09 */
errStatus = viPrintf(E8480A, "SCAN (@100:109)\n");
if(VI_SUCCESS > errStatus){

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Pause until ready */
errStatus = viQueryf(E8480A, "*OPC?\n", "%t", opc_int);
if(VI_SUCCESS > errStatus){

printf("ERROR: viQueryf() returned 0x%x\n", errStatus);
return errStatus;}

/* Start scan and close channel 100 */
errStatus = viPrintf(E8480A, "INIT\n");
if(VI_SUCCESS > errStatus){

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Wait for scan complete*/
errStatus = viPrintf(E8480A, "STAT:OPER:ENAB 256\n");
if(VI_SUCCESS > errStatus){

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

for (; ;){
errStatus = viQueryf(E8480A, "*STB?\n", "%d", &opc_int);
if (opc_int&0x80)
 break;}

printf("Scan has completed!\n");

/* Get readings from multimeter */
errStatus = viQueryf(E1412A, "FETC?\n", "%,10lf", readings);
if(VI_SUCCESS > errStatus){

printf("ERROR: viQueryf() returned 0x%x\n", errStatus);
return errStatus;}

/* Display measurement results */
for (loop=0;loop<10;loop++) {

printf ("Reading %d is: %lf\n", loop, readings[loop]); }

/* Close the E8480A instrument session */
errStatus = viClose (E8480A);
if (VI_SUCCESS > errStatus) {

printf("ERROR: viClose() returned 0x%x\n", errStatus);
return 0;}
42 Using the Module Chapter 3

/* Close the multimeter instrument session */
errStatus = viClose (E1412A);
if (VI_SUCCESS > errStatus) {

printf("ERROR: viClose() returned 0x%x\n", errStatus);
return 0;}

/* Close the resource manager session */
errStatus = viClose (viRM);
if (VI_SUCCESS > errStatus) {

printf("ERROR: viClose() returned 0x%x\n", errStatus);
return 0;}

return VI_SUCCESS;
}

Using the Scan Complete Bit
You can use the Scan Complete bit (bit 8) in the Operation Status Register
(in the command module) of a switchbox to determine when a scanning
cycle completes (no other bits in the register apply to the switchbox). Bit 8
has a decimal value of 256 and you can read it directly with the
STATus:OPERation[:EVENt]? command. See Page 76 in Chapter 4 for more
information.

When enabled by the STAT:OPER:ENAB 256 command, the Scan Complete
bit will be reported as bit 7 of the Status Byte Register. Use the GPIB Serial
Poll or the IEEE 488.2 Common Command *STB? to read the Status Byte
Register.

When bit 7 of the Status Register is enabled by the *SRE 128 Common
Command to assert a GPIB Service Request (SRQ), you can interrupt the
computer when the Scan Complete bit is set, after a scanning cycle
completes. This allows the computer to do other operations while the
scanning cycle is in progress.

The following example program was written in HTBasic programming
language. It monitors bit 7 of the Status Byte Register to determine when the
scanning cycle is complete. The computer interfaces with the E1406A
command module over GPIB. The GPIB select code is 7, the GPIB primary
address is 09, and the GPIB secondary address is 15.

Example: Using the
Scan Complete Bit

(HTBasic)

10 OUTPUT 70915; "*RST;*CLS" ! Reset the switch module.
20 OUTPUT 70915; "STATUS:OPER:ENABLE 256"

! Enable Scan Complete Bit.
30 OUTPUT 70915; "TRIG:SOUR IMM" ! Set the switch module for

internal triggering.
40 OUTPUT 70915; "SCAN (@100:105)" ! Set up channel list to scan.
50 OUTPUT 70915; "*OPC?" ! Wait for operation complete.
60 ENTER 70915; A$
70 PRINT "*OPC? =";A$
Using the Module 43Chapter 3

80 OUTPUT 70915; "*STB?" ! Query status byte register.
90 ENTER 70915; A$
100 PRINT "Switch Status = "; A$
110 OUTPUT 70915; "INIT" ! Start scan and close the

channel 100.
120 I =0
130 WHILE(I =0) ! Stay in loop until value

returned from the command
SPOLL (70915).

140 I = SPOLL (70915)
150 PRINT "Waiting for scan to complete..."
160 END WHILE
170 I = SPOLL (70915) ! "128" returned indicates scan

has completed.
180 PRINT "Scan complete: spoll = ";I
190 END

Example: Using the
Scan Complete Bit

(C/C++)

#include <visa.h>
#include <stdio.h>
#include <stdlib.h>

/* Module logical address is 120, secondary address is 15 */
#define INSTR_ADDR "GPIB0::9::15::INSTR"

int main()
{

ViStatus errStatus; /* Status from each VISA call */
ViSession viRM; /* Resource manager. session */
ViSession E8480A; /* Module session */
int scanbit; /* Variable for Scan Complete

Bit*/

/* Open the default resource manager */
errStatus = viOpenDefaultRM (&viRM);
if(VI_SUCCESS > errStatus){

printf("ERROR: viOpenDefaultRM() returned 0x%x\n", errStatus);
return errStatus;}

/* Open the module instrument session */
errStatus = viOpen(viRM,INSTR_ADDR, VI_NULL,VI_NULL,&E8480A);
if(VI_SUCCESS > errStatus){

printf("ERROR: viOpen() returned 0x%x\n", errStatus);
return errStatus;}

/* Set timeout value for the module */
viSetAttribute (E8480A,VI_ATTR_TMO_VALUE,1000000);

/* Reset the module and clear its status registers */
errStatus = viPrintf(E8480A, "*RST;*CLS\n");
if (VI_SUCCESS > errStatus) {

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}
44 Using the Module Chapter 3

/* Enable the Scan Complete Bit */
errStatus = viPrintf(E8480A, "STAT:OPER:ENAB 256\n");
if(VI_SUCCESS > errStatus){

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Set trigger source to IMMediate for internal triggering */
errStatus = viPrintf(E8480A, "TRIG:SOUR IMM\n");
if(VI_SUCCESS > errStatus){

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Specify a channel list for scanning */
errStatus = viPrintf(E8480A, "SCAN (@100:105)\n");
if(VI_SUCCESS > errStatus){

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Start Scan and close channel 100 */
errStatus = viPrintf(E8480A, "INIT\n");
if(VI_SUCCESS > errStatus){

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Stay in loop until scan complete */
for (; ;){

errStatus = viQueryf(E8480A, "*STB?\n", "%d", &scanbit);
printf("Waiting for scan to complete...\n");
if (scanbit&0x80)
 break;}

printf("Scan has completed!\n");

/* Close the E8480A instrument session */
errStatus = viClose (E8480A);
if (VI_SUCCESS > errStatus) {

printf("ERROR: viClose() returned 0x%x\n", errStatus);
return 0;}

/* Close the resource manager session */
errStatus = viClose (viRM);
if (VI_SUCCESS > errStatus) {

printf("ERROR: viClose() returned 0x%x\n", errStatus);
return 0;}

return VI_SUCCESS;
}

Using the Module 45Chapter 3

Recalling and Saving States
The *SAV <numeric_state> command saves the current instrument state.
The state number (0-9) is specified by the numeric_state parameter. The
settings saved by this command are as follows:

• Channel relays states (open or closed)
• ARM:COUNt
• TRIGger:SOURce
• OUTPut:STATe
• INITiate:CONTinuous

The *RCL <numeric_state> command recalls a previously saved state
specified by the numeric_state parameter. If no *SAV was previously
executed for the numeric_state, *RST default settings are used.

Example: Saving
and Recalling

Instrument State
(HTBasic)

The following example program was written in HTBasic programming
language. It demonstrates how to save and recall the switch module states.
It first closes channels 100 through 119, then saves current channel states to
the state 3. After reset the module to open all channels of the module, then
recall the stored state 3 and verify whether the channels are set to the saved
state (channels 100 through 119 are closed).

10 DIM A$[100] ! Dimension a string variables to
100 characters.

20 OUTPUT 70915; "*RST; *CLS" ! Reset the module and clear
Status Register.

30 OUTPUT 70915; "CLOS (@100:119)" ! Close channels 00 through 19.
40 OUTPUT 70915; "*SAV 3" ! Save as numeric state 3.

50 OUTPUT 70915; "*RST; *CLS" ! Reset the module and clear
Status Register.

60 OUTPUT 70915; "CLOS? (@100:139)" ! Query all channels state after a
reset.

70 ENTER 70915; A$! Enter the result into A$.
80 PRINT "After a reset, all channels states: "; A$

! Print the contents of the
variable A$.

90 OUTPUT 70915; "*RCL 3" ! Recall numeric state 3.
100 OUTPUT 70915; "CLOS? (@100:139)" ! Queries the closed channels

after recalling the state 3.

110 ENTER 70915; A$! Enter the result into A$.

120 PRINT "After recall, all channels states: "; A$
! Print the contents of the

variable A$. 1s for the first 20
channels and 0s for the
remaining 16 channels should
be displayed.

130 END
46 Using the Module Chapter 3

Querying the Module
All query commands end with a "?". The data is sent to the output buffer
where you can retrieve it into your computer. The following summarizes the
query commands you can use to obtain the specific information of the
module. See Chapter 4 for more details of these commands.

Channel closed: CLOS?

Channel open. OPEN?

Module Description: SYST:CDES?

Module Type: SYST:CTYP?

System error: SYST:ERR?

Emergency Status: DIAG:EMER:STAT?

Emergency Port Status: DIAG:EMER:TRIG:STAT?

Detecting Error Conditions
The SYSTem:ERRor? command queries the instrument’s error queue for
error conditions. If no error occurs, the switch module responds with 0,"No
error". If errors do occur, the module will respond with the first one in its
error queue. Subsequent queries continue to read the error queue until it is
empty. The response takes the following form:

<err_number>, <err_message>

where <err_number> is an integer ranging from -32768 to 32767, and the
<err_message> is a short description of the error and the maximum string
length is 255 characters. See Appendix C of this manual for a listing of the
module error numbers and corresponding messages.

Example: Querying
Errors (HTBasic)

The following example program was written in HTBasic programming
language. It attempts to access an illegal channel number and then polls for
the error message.

10 DIM Err_num$[256] ! Dimension a string variable.
20 OUTPUT 70915; "CLOS (@140)" ! Try to close an illegal

channel 140.
30 OUTPUT 70915; ":SYST:ERR?" ! Check for a system error.
40 ENTER 70915;Err_num$! Enter the error into Err_num$.

50 PRINT "Error: ";Err_num$! Print error +2001, "Invalid
channel number".

60 END
Using the Module 47Chapter 3

Synchronizing the Instruments
This section shows how to synchronize a switch module with other
instruments when making measurements. In the following example, the
module switches a signal to a multimeter, then verifies that the switching is
complete before the multimeter begins a measurement.

Example:
Synchronizing the

Instruments
(HTBasic)

This example program was written in HTBasic language. Assuming the
multimeter (E1412A) has the GPIB address of 70903 and the switch module
has a logical address of 120 (GPIB address of 70915).

10 OUTPUT 70915; "*RST" ! Reset the module.
20 OUTPUT 70915; "CLOS (@101)" ! Close a channel.
30 OUTPUT 70915; "*OPC?" ! Wait for operation complete.
40 ENTER 70915;OPC_value
50 OUTPUT 70915; "CLOS? (@101)" ! Verify that the channel is

closed.
60 ENTER 70915;A
70 IF A=1 THEN
80 OUTPUT 70903; "MEAS:VOLT:DC?" ! When channel is closed, make

the measure.
90 ENTER 70903; Meas_value
100 PRINT Meas_value ! Print the measured value.
110 ELSE
120 PRINT "CHANNEL NOT CLOSE"
130 END IF
140 END
48 Using the Module Chapter 3

Chapter 4

Command Reference

About This Chapter
This chapter describes Standard Commands for Programmable Instruments (SCPI)
and summarizes IEEE 488.2 Common (*) commands applicable to the module. See
the E1406A Command Module User’s Manual for additional information on SCPI
and common commands. This chapter contains the following sections:

• Command Types. 49
• SCPI Command Reference . 51
• SCPI Command Quick Reference . 83
• IEEE 488.2 Common Command Reference 84

Command Types
Commands are separated into two types: IEEE 488.2 Common Commands and SCPI
Commands.

Common
Command

Format

The IEEE 488.2 standard defines the common commands that perform functions
such as reset, self-test, status byte query, and so on. Common commands are four or
five characters in length, always begin with an asterisk (*), and may include one or
more parameters. The command keyword is separated from the first parameter by a
space character. Some examples of common commands are shown below:

*RST *ESR <unmask> *STB?

SCPI
Command

Format

The SCPI commands perform functions like closing/opening switches, making
measurements, querying instrument states or retrieving data. A subsystem command
structure is a hierarchical structure that usually consists of a top level (or root)
command, one or more lower level commands, and their parameters. The following
example shows part of a typical subsystem:

[ROUTe:]
CLOSe <channel_list>
SCAN <channel_list>

[ROUTe:] is the root command, CLOSe and SCAN are the second level commands
with <channel_list> as a parameter.

Command
Separator

A colon (:) always separates one command from the next lower level command as
shown below:

ROUTe:SCAN <channel_list>

Colons separate the root command from the second level command (ROUTe:SCAN).
If a third level existed, the second level is also separated from the third level by a
colon.
Command Reference 49Chapter 4

Abbreviated
Commands

The command syntax shows most commands as a mixture of upper and lower case
letters. The upper case letters indicate the abbreviated spelling for the command. For
shorter program lines, send the abbreviated form. For better program readability, you
may send the entire command. The instrument will accept either the abbreviated
form or the entire command.

For example, if the command syntax shows TRIGger, then TRIG and TRIGGER are
both acceptable forms. Other forms of TRIGger, such as TRIGG or TRIGGE will
generate an error. You may use upper or lower case letters. Therefore, TRIGGER,
trigger, and TrIgGeR are all acceptable.

Implied
Commands

Implied commands are those which appear in square brackets ([]) in the command
syntax. (Note that the brackets are not part of the command and are not sent to the
instrument.) Suppose you send a second level command but do not send the
preceding implied command. In this case, the instrument assumes you intend to use
the implied command and it responds as if you had sent it. Examine the partial
[ROUTe:] subsystem shown below:

[ROUTe:]
CLOSe? <channel_list>

The root command [ROUTe:] is an implied command. To make a query about a
channel’s present status, you can send either of the following command statements:

ROUT:CLOS? <channel_list> or CLOS? <channel_list>

Variable
Commands

Some commands have what appears to be a variable syntax. For example:

OUTPut:TTLTrgn

In this command, the "n" is replaced by a number (range from 0 to 7). No space is
left between the command and the number because the number is part of the
command syntax instead of a parameter.

Parameters Parameter Types. The following table contains explanations and examples of
parameter types you might see later in this chapter.

Parameter Type Explanations and Examples

Numeric Accepts all commonly used decimal representations of number
including optional signs, decimal points, and scientific notation.

123, 123E2, -123, -1.23E2, .123, 1.23E-2, 1.23000E-01. Special
cases include MINimum, MAXimum, and DEFault.

Boolean Represents a single binary condition that is either true or false

ON, OFF, 1, 0

Discrete Selects from a finite number of values. These parameters use
mnemonics to represent each valid setting.

An example is the TRIGger:SOURce <source> command where
source can be BUS, EXT, HOLD, or IMM.
50 Command Reference Chapter 4

Optional Parameters. Parameters shown within square brackets ([]) are optional
parameters. (Note that the brackets are not part of the command and are not sent to
the instrument.) If you do not specify a value for an optional parameter, the
instrument uses the default value. For example, consider the ARM:COUNt?[<MIN |
MAX>] command. If you send the command without specifying a parameter, the
present ARM:COUNt setting is returned. If you send the MIN parameter, the
command returns the minimum count available. If you send the MAX parameter, the
command returns the maximum count available. Be sure to place a space between
the command and the parameter.

Linking
Commands

Linking IEEE 488.2 Common Commands with SCPI Commands. Use a
semicolon between the commands. For example:

*RST;CLOS (@100) or TRIG:SOUR BUS;*TRG

Linking Multiple SCPI Commands. Use both a semicolon and a colon between the
commands. For example:

ARM:COUN1;:TRIG:SOUR EXT

SCPI also allows several commands within the same subsystem to be linked with a
semicolon. For example:

ROUT:CLOS (@100);:ROUT:CLOS? (@100)

- or -

ROUT:CLOS (@100);CLOS? (@100)

SCPI Command Reference
This section describes the Standard Commands for Programmable Instruments
(SCPI) reference commands for the E8480A module. Commands are listed
alphabetically by subsystem and also within each subsystem.
Command Reference 51Chapter 4

ABORt

The ABORt command stops a scan in progress when the scan is enabled via the
interface, and the trigger source is either TRIGger:SOURce BUS or
TRIGger:SOURce HOLD.

Subsystem Syntax ABORt

Comments ABORt Actions: The ABORt command terminates the scan and invalidates the
current channel list. When the ABORt command is executed, the last channel closed
during scanning remains in the closed position.

Affect on Scan Complete Status Bit: Aborting a scan will not set the "scan
complete" status bit.

Stopping Scan Enabled Via Interface: When a scan is enabled via an interface, and
the trigger source is neither HOLD nor BUS, an interface clear command (CLEAR
7 or viClear () function in VISA) can be used to stop the scan. When the scan is
enabled via the interface and TRIGger:SOURce BUS or HOLD is set, you can use
ABORt command to stop the scan.

Restarting a Scan: Use the INITiate command to restart the scan.

Related Commands: ARM, INITiate:CONTinuous, [ROUTe:]SCAN, TRIGger

Example Stopping a Scan with ABORt

This example stops a continuous scan in progress.

TRIG:SOUR BUS ! BUS is trigger source.
INIT:CONT ON ! Set continuous scanning.
SCAN (@100:105) ! Set channel list to be scanned.
INIT ! Start scan, close channel 100.
 . .
 . .
 . .
ABOR ! Abort scan in progress.
52 Command Reference Chapter 4

ARM

The ARM subsystem selects the number of scanning cycles (1 to 32,767) for each
INITiate command.

Subsystem Syntax ARM
:COUNt <number> MIN | MAX
:COUNt? [<MIN | MAX>]

ARM:COUNt

ARM:COUNt <number> MIN | MAX allows scanning cycles to occur a multiple of
times (1 to 32,767) with one INITiate command when INITiate:CONTinuous OFF | 0
is set. MIN sets 1 cycle and MAX sets 32,767 cycles.

Parameters

Comments Number of Scans: Use only values between 1 and 32767, MIN, or MAX for the
number of scanning cycles.

Related Commands: ABORt, INITiate[:IMMediate], INITiate:CONTinuous

*RST Condition: ARM:COUNt 1

Example Setting Ten Scanning Cycles

ARM:COUN 10 ! Set 10 scanning cycles.
SCAN (@100:103) ! Scan channels 100 to 103.
INIT ! Start scan, close channel 100.

Name Type Range of Values Default Value

<number> numeric 1 - 32,767 | MIN | MAX 1
Command Reference 53Chapter 4

ARM:COUNt?

ARM:COUNt? [<MIN | MAX>] returns the current number of scanning cycles set by
ARM:COUNt. The current number of scan cycles is returned when MIN or MAX
parameter is not specified. With MIN or MAX as a parameter, "1" is returned for the
MIN parameter; or "32767" is returned for the MAX parameter regardless of the
ARM:COUNt value set.

Parameters

Comments Related Commands: INITiate[:IMMediate]

Example Querying Number of Scanning Cycles

ARM:COUN 10 ! Set 10 scanning cycles per INIT
command.

ARM:COUN? ! Query number of scanning cycles.

Name Type Range of Values Default Value

<MIN | MAX> numeric MIN = 1, MAX = 32,767 current cycles
54 Command Reference Chapter 4

DIAGnostic

The DIAGnostic subsystem is used to control the module’s interrupt capability,
emergency protection capability, as well as the time interval between the two
scanned channels. All these settings can also be queried with this subsystem.

Subsystem Syntax DIAGnostic
:EMERgency

:CLEar <card_number>
:STATus? <card_number>
:TRIGger

:STATe <card_number>, <mode>
:STATe? <card_number>

:INTerrupt
[:LINE] <card_number>, <line_number>
[:LINE]? <card_number>
:TIMer <card_number>, <time_interval>
:TIMer? <card_number>

:SCAN
:DELay <card_number>, <time_interval>
:DELay? <card_number>

:TEST
[:RELays]?
:SEEProm? <card_number>

DIAGnostic:EMERgency:CLEar

DIAGnostic:EMERgency:CLEar <card_number> command clears the emergency
status of the selected module if an external emergency trigger has ever occurred on
its "Emergency Reset" port when enabled. Use
DIAGnostic:EMERgency:TRIGger:STATe command to enable/disable the
"Emergency Reset" port. Use DIAGnostic:EMERgency:STATus? command to check
whether an external emergency trigger happened or not.

Parameters

Comments This Command Not Always Used: This command is not required if the external
emergency trigger is disabled by the DIAGnostic:EMERgency:TRIGger:STATe
command or no emergency trigger occurs on the "Emergency Reset" port.

Using This Command: Once an external emergency trigger occurs, all relays on the
module are open and can not be operated any more. In such case, use
DIAGnostic:EMERgency:CLEar command to clear the current emergency state and
recover the operation on relays.

Related Commands: DIAGnostic:EMERgency:STATus?,
DIAGnostic:EMERgency:TRIGger:STATe

Name Type Range of Values Default Value

<card_number> numeric 1 - 99 N/A
Command Reference 55Chapter 4

Example Clearing the Emergency State Occurred on Module #1

DIAG:EMER:CLEar 1 ! Clear emergency state of module #1.

DIAGnostic:EMERgency:STATus?

DIAGnostic:EMERgency:STATus? <card_number> command queries the
selected module to determine whether an external emergency trigger had occurred
on the "Emergency Reset" port while enabled. Return value of "1" indicates an
external emergency trigger occurs on the port. Otherwise, return value of "0".

Parameters

Comments Related Commands: DIAGnostic:EMERgency:CLEar,
DIAGnostic:EMERgency:TRIGger:STATe?

Example Querying the Emergency State Happened or Not

DIAG:EMER:CLEar 1 ! Clear the emergency status ever
occurred on module #1

DIAG:EMER:STAT? 1 ! "0" returned indicates that the
emergency status has been cleared.

DIAGnostic:EMERgency:TRIGger:STATe

DIAGnostic:EMERgency:TRIGger:STATe <card_number>, <mode> enables or
disables the "Emergency Reset" port on the selected module to accept external
emergency trigger. The <mode> is set to "1" if the port is enabled or "0" if disabled.
By default, the "Emergency Reset" port is disabled at power-up.

Parameters

Comments Enabling "Emergency Reset" Port: When enabled, the "Emergency Reset" port
can accept a TTL low voltage or a +5V negative-going pulse to force the module to
open all channels. In such case, you can not operate the module any more unless
clearing the current emergency state by sending the DIAGnostic:EMERgency:CLEar
command or power-off the module.

Related Commands: DIAGnostic:EMERgency:CLEar,
DIAGnostic:EMERgency:STATus?, DIAGnostic:EMERgency:TRIGger:STATe?

*RST Condition: The "Emergency Reset" port is disabled.

Name Type Range of Values Default Value

<card_number> numeric 1 - 99 N/A

Name Type Range of Values Default Value

<card_number> numeric 1 - 99 N/A

<mode> boolean ON | OFF | 1 | 0 OFF | 0
56 Command Reference Chapter 4

Example Enabling the "Emergency Reset" Port on Module #1

DIAG:EMER:TRIG:STAT 1,1 ! Enable module #1 to accept emergency
trigger.

DIAGnostic:EMERgency:TRIGger:STATe?

DIAGnostic:EMERgency:TRIGger:STATe? <card_number> queries the present
setting for the "Emergency Reset" port of the selected module. The command returns
"1" if the port is enabled or "0" if disabled.

Parameters

Comments Related /Commands: DIAGnostic:EMERgency:TRIGger:STATe,
DIAGnostic:EMERgency:STATus?

Example Querying the "Emergency Reset" Port State (Enable/Disable)

DIAG:EMER:TRIG:STAT 1,1 ! Enable module #1 to accept emergency
trigger.

DIAG:EMER:TRIG:STAT? 1 ! Return of "1" indicates the emergency
function of module #1 is enabled.

DIAGnostic:INTerrupt[:LINe]

DIAGnostic:INTerrupt[:LINe] <card_number>, <line_number> sets the interrupt
line of the specified module. The <card_number> specifies which E8480A in a
multiple-module switchbox, is being referred to. The <line_number> can be 1
through 7 corresponding to VXI backplane interrupt lines 1 through 7. The default
value is 1 (lowest interrupt level).

NOTE Changing the interrupt priority level is not recommended. DO NOT change it
unless specially instructed to do so.

Parameters

Comments Disable Interrupt: Setting <line_number> = 0 will disable the module’s interrupt
capability.

Select an Interrupt Line: The line_number can be 1 through 7 corresponding to
VXI backplane interrupt lines 1-7. Only one value can be set at one time. The default
value is 1 (lowest interrupt level).

Related Commands: DIAGnostic:INTerrupt[:LINe]?

Name Type Range of Values Default Value

<card_number> numeric 1 - 99 N/A

Name Type Range of Values Default Value

<card_number> numeric 1 - 99 N/A

<line_number> numeric 0 - 7 1
Command Reference 57Chapter 4

Example Setting the Module’s Interrupt Line to 1

DIAG:INT:LIN 1, 1 ! Set the interrupt line of Module #1 to
line 1.

DIAGnostic:INTerrupt[:LINe]?

DIAGnostic:INTerrupt[:LINe]? <card_number> queries the module’s VXI
backplane interrupt line and the returned value is one of 1, 2, 3, 4, 5, 6, 7 which
corresponds to the module’s interrupt lines 1-7. The returned value being 0 indicates
that the module’s interrupt is disabled. The card_number specifies which E8480A in
a multiple-module switchbox is being referred to.

Parameters

Comments Return value of "0" indicates that the module’s interrupt is disabled. Return values
of 1-7 correspond to VXI backplane interrupt lines 1 through 7.

When power-on or reset the module, the default interrupt line is 1.

Example Querying the Module’s Interrupt Line

DIAG:INT:LIN 1, 1 ! Set the interrupt line of Module #1 to
line 1.

DIAG:INT:LIN? 1 ! Query the module’s interrupt line.

DIAGnostic:INTerrupt:TIMer

DIAGnostic:INTerrupt:TIMer <card_number>, <timer> is used to set the amount
of time (in second) the module will wait after a relay close or open command is given
before sending an interrupt and clearing the "busy" bit. The card_number parameter
specifies which E8480A in a multiple-module switchbox is to be set.

Parameters

Comments We highly recommend you set the time to 15 ms for the E8480A relay.

*RST does not change the selected time.

NOTE Setting the interrupt timer too small can cause system problems. We DO NOT
recommend to change it unless specially instructed to do so.

Name Type Range of Values Default Value

<card_number> numeric 1 - 99 N/A

Name Type Range of Values Default Value

<card_number> numeric 1 - 99 N/A

<timer> numeric 0.000001 - 0.064 seconds 0.015 second
58 Command Reference Chapter 4

Example Setting Interrupt Timer of Module #1 to 15 ms

DIAG:INT:TIM 1, 0.015 ! Set Module 1 Interrupt timer to 15 ms.

DIAGnostic:INTerrupt:TIMer?

DIAGnostic:INTerrupt:TIMer? <card_number> queries the specified module and
returns the interrupt delay time set by the DIAG:INT:TIM command.

Example Querying the Interrupt Timer Set for Module #1

DIAG:INT:TIM? 1 ! Query the interrupt timer set for the
Module #1.

DIAGnostic:SCAN:DELay

DIAGnostic:SCAN:DELay <card_number>, <delay_timer> sets the amount of
extra time (in second) the module will wait between opening one channel and closing
the next in a scan operation. The card_number parameter specifies which E8480A
in a multiple-module switchbox is to be set.

Parameters

Example Setting the Delay Time for Scanning Operation

DIAG:SCAN:DEL 1, 0.01 ! Module #1 will wait 10 ms between
opening one channel and closing the
next specified in the scan list.

DIAGnostic:SCAN:DELay?

DIAGnostic:SCAN:DELay? <card_number> queries the specified module and
returns the delay time (in second) set by the DIAG:SCAN:DEL command.

Example Querying the Scan Delay Time Set for Module #1

DIAG:SCAN:DEL? 1 ! Query the scan delay time setting on the
Module #1.

Name Type Range of Values Default Value

<card_number> numeric 1 - 99 N/A

<delay_timer> numeric 0 - 6.5535 seconds 0 second
Command Reference 59Chapter 4

DIAGnostic:TEST[:RELays]?

DIAGnostic:TEST[:RELays]? causes the instrument to perform a self test which
includes writing to and reading from all relay registers and verifying the correct
values. A failure may indicate a potential hardware problem.

Comments Returned Value: Returns 0 if all tests passed; otherwise the card fails.

Error Codes: If the card fails, the returned value is in the form
100*card number + error code. Error codes are:

1 = Internal driver error;
2 = VXI bus time out;
3 = Card ID register incorrect;
5 = Card data register incorrect;
10 = Card did not interrupt;
11 = Card busy time incorrect;
40 = Relay register read and written data don’t match.

WARNING Disconnect any connections to the module when performing this
function.

Example Performing Diagnostic Test to Check Error(s)

DIAG:TEST? ! Returned value can be either 0 or other
value. "0" indicates that the system has
passed the self test otherwise the system
has an error.

DIAGnostic:TEST:SEEProm?

DIAGnostic:TEST:SEEProm? <card_number> checks the integrity (checksum) of
the serial EEPROM on the module. Return value of "0" if no error. Otherwise, return
value of "-1".

Parameters

Comments Related Commands: SYST:CTYPE? <card_number>

Example Checking EEPROM Checksum on Module #1

DIAG:TEST:SEEProm? 1 ! Return "0" if no error.

Name Type Range of Values Default value

<card_number> numeric 1 - 99 N/A
60 Command Reference Chapter 4

DISPlay

The DISPlay subsystem monitors the channel state of the selected module in a
switchbox. This subsystem operates with an E1406A command module when a
display terminal is connected. With an RS-232 terminal connected to the E1406A
command module’s RS-232 port, these commands control the display on the
terminal, and would in most cases be typed directly from the terminal keyboard. It is
possible however, to send these commands over the GPIB interface, and control the
terminal’s display. In this case, care must be taken that the instrument receiving the
DISPlay command is the same one that is currently selected on the terminal;
otherwise, the GPIB command will have no visible affect.

Subsystem Syntax DISPlay
:MONitor

:CARD <number> | AUTO
:CARD?
[:STATe] <mode>
[:STATe]?

DISPlay:MONitor:CARD

DISPlay:MONitor:CARD <number> | AUTO selects the module in a switchbox to
be monitored when the monitor mode is enabled. Use the DISPlay:MONitor:STATe
command to enable or disable the monitor mode.

Parameters

Comments Selecting a Specific Module to be Monitored: Use the DISPlay:MONitor:CARD
command to send the card number for the switchbox to be monitored.

Selecting the Present Module to be Monitored: Use the DISPlay:MONitor:CARD
AUTO command to select the last module addressed by a switching command (for
example, [ROUTe:]CLOSe).

*RST Conditions: DISPlay:MONitor:CARD AUTO

Example Selecting Module #2 in a Switchbox for Monitoring

DISPlay:MONitor:CARD 2 ! Select module #2 in a switchbox to be
monitored.

DISPlay:MONitor:CARD?

DISPlay:MONitor:CARD? queries the setting of the DISPlay:MONitor:CARD
command and returns the module in a switchbox being monitored.

Name Type Range of Values Default Value

<number> | AUTO numeric 1 - 99 | AUTO AUTO
Command Reference 61Chapter 4

DISPlay:MONitor[:STATe]

DISPlay:MONitor[:STATe] <mode> turns the monitor mode ON or OFF. When
monitor mode is on, the RS-232 terminal display presents an array of values
indicating the closed channels on the module. The display is dynamically updated
each time a channel is opened or closed.

Parameters

Comments Monitoring Switchbox Channels: DISPlay:MONitor[:STATe] ON or
DISPlay:MONitor[:STATe] 1 turns the monitor mode ON to show the channel state
of the selected module. DISPlay:MONitor[:STATe] OFF or
DISPlay:MONitor[:STATe] 0 turns the monitor mode OFF.

NOTE Typing in another command on the RS-232 terminal will cause the
DISPlay:MONitor[:STATe] to automatically be set to OFF (0). Use of the OFF
parameter is useful only if the command is issued over the GPIB interface.

Selecting the Module to be Monitored: Use the DISPlay:MONitor:CARD
<number> | AUTO command to select the module.

Monitor Mode for an E8480A: When monitoring mode is turned ON, the states of
all 40 channels are displayed at the bottom of the terminal in three groups (channels
0-15, channels 16-31, and channels 32-39). Following each channel range numbers
are the channel states within two brackets in the order of the channels order. "1"
represents the corresponding channel is closed and "0" represents the corresponding
channel is open. For example, the display:

Chan: 0-15 (0110000000000001) 16-31 (1000000000000001)
32-39 (10000000)

The example indicates that channels 01, 02, 15, 16, 31 and 32 are closed.

*RST Condition: DISPlay:MONitor[:STATe] OFF | 0.

Example Enabling the Monitor Mode for Module #2

DISP:MON:CARD 2 ! Select module #2 in a switchbox to be
monitored.

DISP:MON ON ! Turn on monitor mode.

DISPlay:MONitor[:STATe]?

DISPlay:MONitor[:STATe]? queries the monitor mode state whether it is set to ON
or OFF.

Name Type Range of Values Default Value

<mode> boolean ON | OFF | 1 | 0 OFF | 0
62 Command Reference Chapter 4

INITiate

The INITiate command subsystem selects continuous scanning cycles and starts the
scanning cycle.

Subsystem Syntax INITiate
:CONTinuous <mode>
:CONTinuous?
[:IMMediate]

INITiate:CONTinuous

INITiate:CONTinuous <mode> enables or disables continuous scanning cycles for
the switchbox.

Parameters

Comments Continuous Scanning Operation: Continuous scanning is enabled with the
INITiate:CONTinuous ON or INITiate:CONTinuous 1 command. Sending the
INITiate:IMMediate command closes the first channel in the channel list. Each trigger
from the trigger source specified by the TRIGger:SOURce command advances the
scan through the channel list. A trigger at the end of the channel list closes the first
channel in the channel list and the scan cycle repeats.

Noncontinuous Scanning Operation: Noncontinuous scanning is enabled with the
INITiate:CONTinuous OFF or INITiate:CONTinuous 0 command. Sending the
INITiate:IMMediate command closes the first channel in the channel list. Each trigger
from the trigger source specified by the TRIGger:SOURce command advances the
scan through the channel list. A trigger at the end of the channel list opens the last
channel in the list and the scanning cycle stops.

Stopping Continuous Scan: Refer to the ABORt command on page 52.

Related Commands: ABORt, ARM:COUNt, INITiate[:IMMediate],
TRIGger:SOURce.

*RST Condition: INITiate:CONTinuous OFF | 0

Example Enabling Continuous Scanning

This example enables continuous scanning of channels 100 through 105 of a
single-module switchbox. Since TRIGger:SOURce IMMediate (default) is set, use an
interface clear command (such as CLEAR 7 or viClear() in VISA) to stop the scan.

INIT:CONT ON ! Enable continuous scanning.
SCAN (@100:105) ! Set channel list to be scanned.
INIT ! Start scan, close channel 100.

Name Type Range of Values Default Value

<mode> boolean ON | OFF | 1 | 0 OFF | 0
Command Reference 63Chapter 4

INITiate:CONTinuous?

INITiate:CONTinuous? queries the scanning state. With continuous scanning
enabled, the command returns "1" (ON). With continuous scanning disabled, the
command returns "0" (OFF).

Example Querying Continuous Scanning

INIT:CONT ON ! Enable continuous scanning.
INIT:CONT? ! Query continuous scanning state.

It returns "1" (ON).

INITiate[:IMMediate]

INITiate[:IMMediate] starts the scanning process and closes the first channel in the
channel list. Successive triggers from the source specified by the TRIGger:SOURce
command advances the scan through the channel list.

Comments Starting the Scanning Cycle: The INITiate:IMMediate command starts scanning by
closing the first channel in the channel list. Each trigger received advances the scan
to the next channel in the channel list. An invalid channel list generates an error (see
the [ROUTe:]SCAN command on page 71).

Stopping Scanning Cycles: Refer to the ABORt command.

Related Commands: ABORt, ARM:COUNt, INITiate:CONTinuous, TRIGger,
TRIGger:SOURce

Example Enabling a Single Scan

This example enables a single scan of channels 100 through 105 of a single-module
switchbox. The trigger source to advance the scan is immediate (internal) triggering
set with TRIGger:SOURce:IMMediate (default).

SCAN (@100:105) ! Scan channels 00-05.
INIT ! Start scan, close channel 00 (use

immediate triggering).
64 Command Reference Chapter 4

OUTPut

The OUTPut command subsystem selects the source of the output trigger generated
when a channel is closed during a scan. The selected output can be enabled, disabled,
or queried. The three available outputs are ECLTrg, TTLTrg trigger buses, and the
"Trig Out" port on the command module’s front panel (e.g. E1406A).

Subsystem Syntax OUTPut
:ECLTrgn (:ECLTrg0 or :ECLTrg1)

[:STATe] <mode>
[:STATe]?

[:EXTernal]
[:STATe] <mode>
[:STATe]?

:TTLTrgn (:TTLTrg0 through :TTLTrg7)
[:STATe] <mode>
[:STATe]?

OUTPut:ECLTrgn[:STATe]

OUTPut:ECLTrgn[:STATe] <mode> selects and enables which ECL Trigger bus
line (0 and 1) will output a trigger when a channel is closed during a scan. This is
also used to disable a selected ECL Trigger bus line. "n" specifies the ECL Trigger
bus line (0 or 1) and <mode> enables (ON or 1) or disables (OFF or 0) the specified
ECL Trigger bus line.

Parameters

Comments Enabling ECL Trigger Bus: When enabled, a trigger pulse is output from the
selected ECL Trigger bus line (0 or 1) each time a channel is closed during a scan.
The output is a negative going pulse.

ECL Trigger Bus Line Shared by Switchboxes: Only one switchbox
configuration can use the selected trigger at a time. When enabled, the selected ECL
Trigger bus line (0 or 1) is pulsed by the switchbox each time a scanned channel is
closed. To disable the output for a specific switchbox, send the OUTPut:ECLTrgn
OFF or 0 command for that switchbox.

One Output Selected at a Time: Only one output (ECLTrgn, TTLTrgn or EXTernal)
can be enabled at one time. Enabling a different output source will automatically
disable the active output. For example, if ECLTrg0 is the active output and ECLTrg1
is enabled, ECLTrg0 will become disabled and ECLTrg1 will become the active
output.

Name Type Range of Values Default Value

n numeric 0 or 1 N/A

<mode> boolean 0 | 1 | OFF | ON OFF | 0
Command Reference 65Chapter 4

Related Commands: [ROUTe:]SCAN, TRIGger:SOURce,
OUTPut:ECLTrgn[:STATe]?

*RST Condition: OUTPut:ECLTrgn[:STATe] OFF (disabled)

Example Enabling ECL Trigger Bus Line 0

OUTP:ECLT0:STAT 1 ! Enable ECL Trigger bus line 0
to output pulse after each scanned
channel is closed.

OUTPut:ECLTrgn[:STATe]?

OUTPut:ECLTrgn[:STATe]? queries the state of the specified ECL Trigger bus line.
The command returns "1" if the specified ECL Trg bus line is enabled or "0" if it is
disabled.

Example Querying ECL Trigger Bus Enable State

This example enables ECL Trigger bus line 1 and queries the enable state. The
OUTPut:ECLTrgn? command returns "1" since the line is enabled.

OUTP:ECLT1:STAT 1 ! Enable ECL Trigger bus line 1.
OUTP:ECLT1? ! Query bus enable state.

OUTPut[:EXTernal][:STATe]

OUTPut[:EXTernal][:STATe] <mode> enables or disables the "Trig Out" port on
the E1406A command module to output a trigger when a channel is closed during a
scan.

• OUTPut[:EXTernal][:STATe] ON | 1 enables the port.
• OUTPut[:EXTernal][:STATe] OFF | 0 disables the port.

Parameters

Comments Enabling "Trig Out" Port: When enabled, a pulse is output from the "Trig Out"
port each time a channel is closed during scanning. If disabled, a pulse is not output
from the port after channel closures.

Output Pulse: The pulse is a +5 V negative-going pulse.

"Trig Out" Port Shared by Switchboxes: Only one switchbox configuration can
use the selected trigger at a time. When enabled, the "Trig Out" port may is pulsed
by the switchbox each time a scanned channel is closed. To disable the output for a
specific switchbox, send the OUTP OFF or 0 command for that switchbox.

Name Type Range of Values Default Value

<mode> boolean ON | OFF | 1 | 0 OFF | 0
66 Command Reference Chapter 4

One Output Selected at a Time: Only one output (ECLTrgn, TTLTrgn or EXTernal)
can be enabled at one time. Enabling a different output source will automatically
disable the active output. For example, if TTLTrg1 is the active output and TTLTrg4
is enabled, TTLTrg1 will become disabled and TTLTrg4 will become the active
output.

Related Commands: [ROUTe:]SCAN, TRIGger:SOURce

*RST Condition: OUTPut[:EXTernal][:STATe] OFF (port disabled)

Example Enabling "Trig Out" Port

OUTP ON ! Enable "Trig Out" port to output pulse
after each scanned channel is closed.

OUTPut[:EXTernal][:STATe]?

OUTPut[:EXTernal][:STATe]? queries the present state of the "Trig Out" port on the
E1406A command module. The command returns "1" if the port is enabled or "0" if
disabled.

Example Querying "Trig Out" Port State

OUTP ON ! Enable "Trig Out" port for pulse output.
OUTP? ! Query port enable state.

OUTPut:TTLTrgn[:STATe]

OUTPut:TTLTrgn[:STATe] <mode> selects and enables which TTL Trigger bus
line (0 to 7) will output a trigger when a channel is closed during a scan. This
command is also used to disable a selected TTL Trigger bus line. "n" specifies the
TTL Trigger bus line (0 to 7) and <mode> enables (ON or 1) or disables (OFF or 0)
the specified TTL Trigger bus line.

Parameters

Comments Enabling TTL Trigger Bus: When enabled, a pulse is output from the selected TTL
Trigger bus line (0 to 7) after each channel is closed during a scan. If disabled, a pulse
is not output from the selected TTL Trigger bus line after channel closures. The
output is a negative-going pulse.

Name Type Range of Values Default Value

n numeric 0 to 7 N/A

<mode> boolean ON | OFF | 1 | 0 OFF | 0
Command Reference 67Chapter 4

TTL Trigger Bus Line Shared by Switchboxes: Only one switchbox configuration
can use the selected trigger at a time. When enabled, the selected TTL Trigger bus
line (0 to 7) is pulsed by the switchbox each time a scanned channel is closed. To
disable the output for a specific switchbox, send the OUTPut:TTLTrgn OFF or 0
command for that switchbox.

One Output Selected at a Time: Only one output (ECLTrgn, TTLTrgn or EXTernal)
can be enabled at one time. Enabling a different output source will automatically
disable the active output. For example, if TTLTrg1 is the active output and TTLTrg4
is enabled, TTLTrg1 will become disabled and TTLTrg4 will become the active
output.

Related Commands: [ROUTe:]SCAN, TRIGger:SOURce,
OUTPut:TTLTrgn[:STATe]?

*RST Condition: OUTPut:TTLTrgn[:STATe] OFF (disabled)

Example Enabling TTL Trigger Bus Line 7

OUTP:TTLT7:STAT 1 ! Enable TTL Trigger bus line 7 to output
pulse after each scanned channel is
closed.

OUTPut:TTLTrgn[:STATe]?

OUTPut:TTLTrgn[:STATe]? queries the present state of the specified TTL Trigger
bus line. The command returns "1" if the specified TTLTrg bus line is enabled or "0"
if disabled.

Example Querying TTL Trigger Bus Enable State

This example enables TTL Trigger bus line 7 and queries the enable state. The
OUTPut:TTLTrgn? command returns "1" since the port is enabled.

OUTP:TTLT7:STAT 1 ! Enable TTL Trigger bus line 7.
OUTP:TTLT7? ! Query bus enable state.
68 Command Reference Chapter 4

[ROUTe:]

The [ROUTe:] command subsystem controls switching and scanning operations for
the E8480A modules in a switchbox.

Subsystem Syntax [ROUTe:]
CLOSe <channel_list>
CLOSe? <channel_list>
OPEN <channel_list>
OPEN? <channel_list>
SCAN <channel_list>

[ROUTe:]CLOSe

[ROUTe:]CLOSe <channel_list> closes the channels specified in the channel_list.
Channel_list is in the form (@ccnn), where cc = card number (01-99) and nn =
channel number (00-39).

Parameters

Comments Closing Channels: To close:

-- a single channel, use CLOS (@ccnn);
-- multiple channels, use CLOS (@ccnn,ccnn,...);
-- sequential channels, use CLOS (@ccnn:ccnn);
-- groups of sequential channels, use CLOS (@ccnn:ccnn;ccnn:ccnn);
-- or any combination of the above.

Closure order for multiple channels with a single command is not guaranteed. Use
sequential CLOSe commands when needed.

NOTE Channel numbers in the <channel_list> can be in any random order.

Related Commands: [ROUTe:]OPEN, [ROUTe:]CLOSe?

*RST Condition: All channels are open.

Example Closing Multiple Channels

This example closes channels 100 and 213 of a two-module switchbox.

CLOS (@100,213) ! Close channels 100 and 213.

Name Type Range of Values Items

<channel_list>
numeric
numeric

1 - 99
00 - 39

card (cc)
channel (nn)
Command Reference 69Chapter 4

[ROUTe:]CLOSe?

[ROUTe:]CLOSe? <channel_list> returns the current state of the channel(s)
queried. Channel_list is in the form (@ccnn). The command returns "1" if the
channel is closed or returns "0" if the channel is open. If a list of channels is queried,
a comma delineated list of 0 or 1 values is returned in the same order of the channel
list.

Comments Query is Software Readback: The ROUTe:CLOSe? command returns the current
software state of the channel(s) specified. It does not account for relay hardware
failures.

Channel_list Definition: See “[ROUTe:]CLOSe” on page 69 for the channel_list
definition.

NOTE A maximum of 128 channels can be queried at one time. Therefore, if you want to
query more than 128 channels, you must enter the query data in two separate
commands.

Example Querying Channel Closure State

This example closes channels 100 and 213 of a two-module switchbox and queries
channel closure. Since the channels are programmed to be closed, "1,1" is returned.

CLOS (@100,213) ! Close channels 100 and 213.
CLOS? (@100,213) ! Query channels 100 and 213 closure

state, returned value "1,1" indicates
that both channels are closed.

[ROUTe:]OPEN

[ROUTe:]OPEN <channel_list> opens the channels specified in the channel_list.
Channel_list is in the form (@ccnn), where cc = card number (01-99) and nn =
channel number (00-39).

Parameters

Comments Opening Channels: To open:

-- a single channel, use OPEN (@ccnn);
-- multiple channels, use OPEN (@ccnn,ccnn,...);
-- sequential channels, use OPEN (@ccnn:ccnn);
-- groups of sequential channels, use OPEN (@ccnn:ccnn;ccnn:ccnn);
-- or any combination of the above.

Opening order for multiple channels with a single command is not guaranteed.

Name Type Range of Values Items

<channel_list>
numeric
numeric

1 - 99
00 - 39

card (cc)
channel (nn)
70 Command Reference Chapter 4

Related Commands: [ROUTe:]CLOSe, [ROUTe:]OPEN?

*RST Condition: All channels are open.

Example Opening Channels

This example opens channels 100 and 213 of a two-module switchbox.

OPEN (@100, 213) !Open channels 100 and 213.

[ROUTe:]OPEN?

[ROUTe:]OPEN? <channel_list> returns the current state of the channel(s)
queried. The channel_list is in the form (@ccnn). The command returns "1" if
channel(s) are open or returns "0" if channel(s) are closed. If a list of channels is
queried, a comma delineated list of 0 or 1 values is returned in the same order of the
channel list.

Comments Query is Software Readback: The ROUTe:OPEN? command returns the current
software state of the channel(s) specified. It does not account for relay hardware
failures.

Channel_list Definition: See the [ROUTe:]OPEN command on page 70 for the
channel_list definition.

NOTE A maximum of 128 channels can be queried at one time. Therefore, if you want to
query more than 128 channels, you must enter the query data in two separate
commands.

Example Querying Channel Open State

This example opens channels 100 and 213 of a two-module switchbox and queries
channel 213 state. Since channel 213 is programmed to be open, "1" is returned.

OPEN (@100,213) ! Open channels 100 and 213.
OPEN? (@213) ! Query channel 213 state.

[ROUTe:]SCAN

[ROUTe:]SCAN <channel_list> defines the channels to be scanned. Channel_list
is in the form (@ccnn), where cc = card number (01-99) and nn = channel number
(00-39).

Parameters

Name Type Range of Values Items

<channel_list>
numeric
numeric

1 - 99
00 - 39

card (cc)
channel (nn)
Command Reference 71Chapter 4

Comments Defining Scan List: When ROUTe:SCAN is executed, the channel list is checked for
valid card and channel numbers. An error is generated for an invalid channel list.

Scanning Channels: To scan:

-- a single channel, use SCAN (@ccnn);
-- multiple channels, use SCAN (@ccnn,ccnn,...);
-- sequential channels, use SCAN (@ccnn:ccnn);
-- groups of sequential channels, use SCAN (@ccnn:ccnn;ccnn:ccnn);
-- or any combination of the above.

Scanning Operation: When a valid channel list is defined, INITiate[:IMMediate]
begins the scan and closes the first channel in the channel_list. Successive triggers
from the source specified by TRIGger:SOURce advance the scan through the
channel list. At the end of the scan, the last trigger opens the last channel.

Stopping Scan: See the ABORt command on page 52.

Related Commands: TRIGger, TRIGger:SOURce

*RST Condition: All channels are open.

Example Scanning Channels Using External Triggers

This example uses external triggering (TRIG:SOUR EXT) to scan channels 100
through 109 of a single-module switchbox. The trigger source to advance the scan is
the input to the "Trig In" on the E1406A command module. When INIT is executed,
the scan is started and channel 00 is closed. Then, each trigger received at the "Trig
In" port advances the scan to the next channel.

TRIG:SOUR EXT ! Set trigger source to external.
SCAN (@100:109) ! Set channel list to be scanned.
INIT ! Start scanning cycle and close channel

100.
(trigger externally) ! Advance scan to next channel.
72 Command Reference Chapter 4

STATus

The STATus subsystem reports the bit values of the Operation Status Register. It
also allows you to unmask the bits you want reported from the Standard Event
Register and to read the summary bits from the Status Byte Register.

Subsystem Syntax STATus
:OPERation

:CONDition?
:ENABle <unmask>
:ENABle?
[:EVENt]?

:PRESet

The STATus system contains four registers (that is, they reside in a SCPI driver, not
in the hardware), two of which are under IEEE 488.2 control: the Standard Event
Status Register (*ESE?) and the Status Byte Register (*STB?). The operational status
bit (OPR), service request bit (RQS), standard event summary bit (ESB), message
available bit (MAV) and questionable data bit (QUE) in the Status Byte Register
(bits 7, 6, 5, 4 and 3 respectively) can be queried with the *STB? command. Use the
*ESE? command to query the <unmask> value for the Standard Event Register (the
bits you want logically OR’d into the summary bit). The registers are queried using
decimal weighted bit values. The decimal equivalents for bits 0 through 15 are
included in Figure 4-1 on page 74.

A numeric value of 256 executed in a STAT:OPER:ENABle <unmask> command
allows only bit 8 to generate a summary bit. The decimal value for bit 8 is 256.

The decimal values are also used in the inverse manner to determine which bits are
set from the total value returned by an EVENt or CONDition query. The E8480A
module driver exploits only bit 8 of Operation Status Register. This bit is called the
scan complete bit which is set whenever a scan operation completes. Since
completion of a scan operation is an event in time, you will find that bit 8 will never
appear set when STAT:OPER:COND? is queried. However, you can find bit 8 set
with the STAT:OPER:EVEN? query command.
Command Reference 73Chapter 4

Figure 4-1. E8480A Status System Register Diagram
74 Command Reference Chapter 4

STATus:OPERation:CONDition?

STATus:OPERation:CONDition? returns the state of the Condition Register in the
Operation Status Group. The state represents conditions which are part of the
instrument’s operation. The module’s driver does not set bit 8 in this register (see
STATus:OPERation[:EVENt]?).

STATus:OPERation:ENABle

STATus:OPERation:ENABle <unmask> sets an enable mask to allow events
recorded in the Event Register (Operation Status Group) to send a summary bit to
the Status Byte Register (bit 7). For the E8480A module, when bit 8 in the Operation
Status Register is set to "1" and that bit is enabled by the
STATus:OPERation:ENABle 256 command, bit 7 in the Status Byte Register is set
to "1".

Parameters

Comments Setting Bit 7 of the Status Byte Register: STATus:OPERation:ENABle 256 sets bit
7 of the Status Register to 1 after bit 8 of the Operation Status Register is set to 1.

Related Commands: [ROUTe:]SCAN

Example Enabling Operation Status Register Bit 8

STAT:OPER:ENAB 256 ! Enable bit 8 of the Operation Status
Register to be reported to bit 7
(OPR) in the Status Byte Register.

STATus:OPERation:ENABle?

STATus:OPERation:ENABle? returns which bits in the Event Register (Operation
Status Group) are unmasked.

Comments Output Format: Returns a decimal weighted value from 0 to 65,535 indicating
which bits are set to true.

Maximum Value Returned: The value returned is the value set by the
STAT:OPER:ENAB <unmask> command. However, the maximum decimal
weighted value used in this module is 256 (bit 8 set to true).

Example Querying the Operation Status Enable Register

STAT:OPER:ENAB? ! Query the Operation Status Enable
Register.

Name Type Range of Values Default Value

<unmask> numeric 0 - 65,535 N/A
Command Reference 75Chapter 4

STATus:OPERation[:EVENt]?

STATus:OPERation[:EVENt]? returns which bits in the Event Register (Operation
Status Group) are set. The Event Register indicates when there has been a
time-related instrument event.

Comments Setting Bit 8 of the Operation Status Register: Bit 8 (scan complete) is set to "1"
after a scanning cycle completes. Bit 8 returns to "0" after sending the
STATus:OPERation[:EVENt]? command.

Returned Data after sending the STATus:OPERation[:EVENt]? Command: The
command returns "+256" if bit 8 of the Operation Status Register is set to "1". The
command returns "+0" if bit 8 of the Operation Status Register is set to "0".

Event Register Cleared: Reading the Event Register with the
STATus:OPERation:EVENt? command clears it.

Aborting a Scan: Aborting a scan will leave bit 8 set to 0.

Related Commands: [ROUTe:]SCAN

Example Reading the Operation Status Register After a Scanning Cycle

STAT:OPER? ! Return the bit values of the Operation
Status Register. +256 shows bit 8 is
set to 1; +0 shows bit 8 is set to 0.

STATus:PRESet

STATus:PRESet affects only the Enable Register by setting all Enable Register bits
to 0. It does not affect either the Status Byte Register or the Standard Event Status
Register. PRESet does not clear any of the Event Registers.
76 Command Reference Chapter 4

SYSTem

The SYSTem subsystem returns the error numbers and error messages in the error
queue of a switchbox. It can also return the types and descriptions of modules in a
switchbox.

Subsystem Syntax SYSTem
:CDEScription? <card_number>
:CPON <card_number> | ALL
:CTYPe? <card_number>
:ERRor?
:VERSion?

SYSTem:CDEScription?

SYSTem:CDEScription? <card_number> returns the description of a selected
module in a switchbox.

Parameters

Comments Module Description: The SYSTem:CDEScription? <card_number> command
returns:

 "40-Channel High Power General Purpose Switch"

Example Reading the Description of Module #1

SYST:CDES? 1 ! Return the description of module #1.

Name Type Range of Values Default Value

<card_number> numeric 1 - 99 N/A
Command Reference 77Chapter 4

SYSTem:CPON

SYSTem:CPON <card_number> | ALL resets the selected module, or multiple
modules to their power-on state.

Parameters

Comments Module Power-on State: The power-on state of the module is all channels (relays)
open. Note that SYSTem:CPON ALL and *RST opens all channels of all modules in
a switchbox, while SYSTem:CPON <number> opens the channels in only the
module (card) specified in the command.

Example Setting Module #1 to its Power-on State

SYST:CPON 1 ! Set module #1 to its power-on state (All
channels open).

SYSTem:CTYPe?

SYSTem:CTYPe? <card_number> returns the module type of a selected module
in a switchbox.

Parameters

Comments Agilent E8480A Module Model Number: Sending this command returns:

HEWLETT-PACKARD,E8480A,<10-digit number>,A.11.01

where the <10-digit number> is the module’s serial number and A.11.01 is an
example of the module revision code number.

NOTE The <10-digit number> returns 0 (zero) if the checksum of the EEPROM on the
module has error.The checksum of EEPROM on the module is always checked each
time the SYST:CTYP? <number> command is executed. Refer to
DIAGnostic:TEST:SEEProm? command on page 60 for details.

Related Commands: DIAG:TEST:SEEProm? <card_number>

Example Reading the Model Number of Module #1

SYST:CTYP? 1 ! Return the model number of module #1.

Name Type Range of Values Default Value

<card_number> numeric 1 - 99 or ALL N/A

Name Type Range of Values Default Value

<card_number> numeric 1 - 99 N/A
78 Command Reference Chapter 4

SYSTem:ERRor?

SYSTem:ERRor? returns the error numbers and corresponding error messages in
the error queue of a switchbox. See Appendix C for a listing of the module error
numbers and messages.

Comments Error Numbers/Messages in the Error Queue: Each error generated by a module
stores an error number and corresponding error message in the error queue of a
switchbox. The error message can be up to 255 characters long, but typically is much
shorter.

Clearing the Error Queue: An error number/message is removed from the queue
each time the SYSTem:ERRor? command is sent. The errors are cleared first-in,
first-out. When the queue is empty, each following SYSTem:ERRor? command
returns: +0, "No error". To clear all error numbers/messages in the queue, execute the
*CLS command.

Maximum Error Numbers/Messages in the Error Queue: The queue holds a
maximum of 30 error numbers/messages for each switchbox. If the queue overflows,
the last error number/message in the queue is replaced by: -350, "Too many errors".
The least recent (oldest) error numbers/messages remain in the queue and the most
recent are discarded.

Example Reading the Error Queue

SYST:ERR? ! Query the error queue.

SYSTem:VERSion?

SYSTem:VERSion? returns the version of the SCPI standard to which this
instrument complies.

Comments SCPI Version: This command always returns a decimal value "1990.0", where
"1990" is the year, and "0" is the revision number within that year.

Example Reading SCPI Version

SYST:VERS? ! Read the version of the SCPI standard.
Command Reference 79Chapter 4

TRIGger

The TRIGger command subsystem controls the triggering operation of the modules
in a switchbox.

Subsystem Syntax TRIGger
[:IMMediate]
:SOURce <source>
:SOURce?

TRIGger[:IMMediate]

TRIGger[:IMMediate] causes a trigger event to occur when the defined trigger
source is TRIGger:SOURce BUS or TRIGger:SOURce HOLD. This can be used to
trigger a suspended scan operation.

Comments Executing the TRIGger[:IMMediate] Command: A channel list must be defined
with [ROUTe:]SCAN <channel_list> and an INITiate[:IMMediate] command must be
executed before TRIGger[:IMMediate] will execute.

BUS or HOLD Source Remains: If selected, the TRIGger:SOURce BUS or
TRIGger:SOURce HOLD commands remain in effect after triggering a switchbox
with the TRIGger[:IMMediate] command.

Related Commands: INITiate, [ROUTe:]SCAN, TRIGger:SOURce

Example Advancing Scan Using TRIGger Command

This example uses the TRIGger command to advance the scan of a single-module
switchbox from channel 100 through 103. Since TRIGger:SOURce HOLD is set, the
scan is advanced one channel each time TRIGger is executed.

TRIG:SOUR HOLD ! Set trigger source to HOLD.
SCAN (@100:103) ! Define channel list to be scanned.
INIT ! Start scanning cycle, close channel 100.
loop statement ! Start count loop.
TRIG ! Advance scan to next channel.
increment loop ! Increment loop count.
80 Command Reference Chapter 4

TRIGger:SOURce

TRIGger:SOURce <source> specifies the trigger source to advance the channel list
during scanning.

Parameters

Comments Enabling the Trigger Source: The TRIGger:SOURce command only selects the
trigger source. The INITiate[:IMMediate] command enables the trigger source. The
trigger source must be selected with TRIGger:SOURce command before executing
the INIT command.

Using the TRIGger Command: You can use TRIGger[:IMMediate] to advance the
scan when TRIGger:SOURce BUS or TRIGger:SOURce HOLD is selected.

Using Bus Triggers: To trigger the switchbox with TRIGger:SOURce BUS
selected, use the IEEE 488.2 common command *TRG or the GPIB Group Execute
Trigger (GET) command.

Using TTL or ECL Trigger Bus Inputs: These triggers are from the VXI backplane
trigger lines ECL[0,1] and TTL[0-7]. These may be used to trigger the "SWITCH"
driver from other VXI instruments.

Using External Trigger Inputs: With TRIGger:SOURce EXTernal selected, only
one switchbox at a time can use the external trigger input at the E1406A "Trig In"
port. The trigger input is assigned to the first switchbox requesting the external
trigger source (with a TRIGger:SOURce EXTernal command).

One Trigger Input Selected at a Time: Only one input (ECLTrg0 or 1; TTLTrg0, 1,
2, 3, 4, 5, 6 or 7; or EXTernal) can be selected at one time. Enabling a different trigger
source will automatically disable the active input. For example, if TTLTrg1 is the
active input, and TTLTrg4 is enabled, TTLTrg1 will become disabled and TTLTrg4
will become the active input.

"Trig Out" Port Shared by Switchboxes: See the “OUTPut” on page 65 for more
information.

Assigning EXTernal, TTLTrgn, and ECLTrgn Trigger Inputs: After using
TRIGger:SOURce EXT|TTLTn|ECLTn, the selected trigger source remains assigned
to the "SWITCH" driver until it is relinquished through use of the
TRIG:SOUR BUS|HOLD command. While the trigger is in use by the "SWITCH"
driver, no other drivers operating on the E1406 command module will have access
to that particular trigger source.

Name Type Parameter Description

BUS discrete *TRG or GET command

ECLTrgn numeric ECL Trigger bus line 0 - 1

EXTernal discrete "Trig In" port

HOLD discrete Hold Triggering

IMMediate discrete Immediate Triggering

TTLTrgn numeric TTL Trigger bus line 0 - 7
Command Reference 81Chapter 4

Related Commands: ABORt, [ROUTe:]SCAN, OUTPut

*RST Condition: TRIGger:SOURce IMMediate

Example Scanning Using External Triggers

This example uses external triggering (TRIG:SOUR EXT) to scan channels 00
through 03 of a single-module switchbox. The trigger source to advance the scan is
the input to the "Trig In" on the E1406A command module. When INIT is executed,
the scan is started and channel 00 is closed. Then, each trigger received at the "Trig
In" port advances the scan to the next channel.

TRIG:SOUR EXT ! Set trigger source to external.
SCAN (@100:103) ! Set channel list to be scanned.
INIT ! Start scan, close channel 100.
(trigger externally) ! Advance channel list to next channel.

Example Scanning Using Bus Triggers

This example uses bus triggering (TRIG:SOUR BUS) to scan channels 100 through
103 of a single-module switchbox. The trigger source to advance the scan is the
*TRG command (as set with TRIGger:SOURce BUS). When INIT is executed, the
scan is started and channel 00 is closed. Then, each *TRG command advances the
scan to the next channel.

TRIG:SOUR BUS ! Set trigger source to BUS.
SCAN (@100:103) ! Set channel list to be scanned.
INIT ! Start scan, close channel 100.
loop statement ! Loop to scan all channels.
*TRG ! Advance channel list to next channel.
Increment loop ! Increment loop count.

TRIGger:SOURce?

TRIGger:SOURce? returns the current trigger source for the switchbox. Command
returns: BUS, EXT, HOLD, IMM, ECLT0-1, or TTLT0-7 for sources BUS, EXTernal,
HOLD, IMMediate, ECLTrgn, or TTLTrgn, respectively.

Example Querying the Trigger Source

This example sets external triggering and queries the trigger source. Since external
triggering is set, TRIG:SOUR? returns "EXT".

TRIG:SOUR EXT ! Set external trigger source.
TRIG:SOUR? ! Query trigger source.
82 Command Reference Chapter 4

SCPI Command Quick Reference
The following table summarizes the SCPI commands for the E8480A Module.

Command Description

ABORt Abort a scan in progress.

ARM :COUNt <number> | MIN | MAX
:COUNt? [MIN|MAX]

Multiple scans per INIT command.
Query number of scans.

DIAGnostic :EMERgency:CLEar <card_num>
:EMERgency:STATus? <card_num>
:EMERgency:TRIGger:STATe <card_num>,<mode>
:EMERgency:TRIGger:STATe? <card_num>,<mode>
:INTerrupt[:LINe] <card_num>,<line_num>
:INTerrupt[:LINe]? <card_num>
:INTerrupt:TIMer <card_num>,<time>
:INTerrupt:TIMer? <card_num>
:SCAN:DELay <card_num>,<time>
:SCAN:DELay? <card_num>
:TEST[:RELays]?
:TEST:EEPRom? <card_num>

Clear the emergency state occurred on the specified module.
Query to see whether an emergency trigger occurs or not.
Enable/disable the "Emergency Reset" port.
Query enable/disable setting for the "Emergency Reset" port.
Set an interrupt line for the specified module.
Query the interrupt line of the specified module.
Set wait time after an open or close before interrupting.
Query the interrupt timer.
Set additional scan delay time.
Query the scan delay time.
Do diagnostic to find the specific error(s).
Check the checksum of EEPROM on the specified module.

DISPlay :MONitor:CARD <card_num> | AUTO
:MONitor:CARD?
:MONitor[:STATe] <mode>
:MONitor[:STATe]?

Select a module in a switchbox to be monitored.
Query which module is set by above command.
Set the monitor state on or off.
Query the monitor state setting.

INITiate :CONTinuous ON | OFF
:CONTinuous?
[:IMMediate]

Enable/disable continuous scanning.
Query continuous scan state.
Start a scanning cycle.

OUTPut :ECLTrgn[:STATe] ON | OFF | 1 | 0
:ECLTrgn[:STATe]?
[:EXTernal][:STATe] ON | OFF | 1 | 0
[:EXTernal][:STATe]?
:TTLTrgn[:STATe] ON |OFF | 1 | 0
:TTLTrgn[:STATe]?

Enable/disable the specified ECL trigger line pulse.
Query the specified ECL trigger line state.
Enable/disable the "Trig Out" port on the command module.
Query the "Trig Out" port enable state.
Enable/disable the specified TTL trigger line pulse.
Query the specified TTL trigger line state.

[ROUTe:] CLOSe <channel _list>
CLOSe? <channel _list>
OPEN <channel_list>
OPEN? <channel _list>
SCAN <channel_list>

Close channel(s).
Query channel(s) closed.
Open channel(s).
Query channel(s) opened.
Define channels for scanning.

STATus :OPERation:CONDition?
:OPERation:ENABle <unmask>
:OPERation:ENABle?
:OPERation[:EVENt]?
:PRESet

Return the contents of the Operation Condition Register.
Enable events in the Operation Event Register to be reported.
Return the unmask value set by STAT:OPER:ENAB command.
Return the contents of the Operation Event Register.
Set Enable Register bits to 0.

SYSTem :CDEScription? <card_num>
:CPON <card_num> | ALL
:CTYPe? <card_num>
:ERRor?
:VERSion?

Returns description of the module.
Opens all channels on the specified module(s).
Returns the module type.
Returns error number/message in the error queue.
Returns the version of the SCPI standard.

TRIGger [:IMMediate]
:SOURce <source>

:SOURce?

Causes a trigger event to occur.
Set trigger source to BUS, or EXT, or HOLD, or IMM, ECLTrgn
or TTLTrgn.
Query scan trigger source.
Command Reference 83Chapter 4

IEEE 488.2 Common Command Reference
The following table lists the IEEE 488.2 Common (*) Commands that apply to the
E8480A module.

Command Command Description

*CLS Clears all status registers (see STATus:OPERation[:EVENt]?) and clears the error queue.

*ESE <register value> Enable Standard Event.

*ESE? Enable Standard Event Query.

*ESR? Standard Event Status Register Query.

*IDN? Instrument ID Query; returns identification string of the module.

*OPC Operation Complete.

*OPC? Operation Complete Query.

*RCL <numeric state> Recalls the instrument state saved by *SAV. You must reconfigure the scan list.

*RST Resets the module. Opens all channels and invalidates current channel list for scanning. Sets
ARM:COUN 1, TRIG:SOUR IMM, and INIT:CONT OFF.

*SAV <numeric state> Stores the instrument state but does not save the scan list.

*SRE <register value> Service request enable, enables status register bits.

*SRE? Service request enable query.

*STB? Read status byte query.

*TRG Triggers the module to advance the scan when scan is enabled and trigger source is
TRIGger:SOURce BUS.

*TST? Self-test. Executes an internal self-test and returns only the first error encountered. Does not return
multiple errors. The following is a list of responses you can obtain where "cc" is the card number with
the leading zero deleted.

+0 if self test passes.
+cc01 for firmware error.
+cc02 for bus error (problem communicating with the module).
+cc03 for incorrect ID information read back from the module’s ID register.
+cc05 for hardware and firmware have different values. Possibly a hardware fault or an

outside entity is register programming the E8480A.
+cc10 if an interrupt was expected but not received.
+cc11 if the busy bit was not held for a sufficient amount of time.

*WAI Wait to Complete.
84 Command Reference Chapter 4

Appendix A

E8480A Specifications

ITEMS SPECIFICATIONS

GENERAL CHARACTERISTICS

Module Size/Device Type: C-Size 1-Slot, Register based, A16,
slave only, P1 and P2 Connectors

Total Channels: 40 channels

Relays Type: Non-latching Form A

Typical Relay Life: No Load:
At Rated Load (5 Vdc & 0.1A):

1 x 107

1 x 105

Power Requirements: Peak Module Current:
Dynamic Module Current:

3.5 A @ +5 V
0.1 A @ +5 V

Watts/slot: 86 W

Cooling/slot: 0.70 mm H2O @ 6.9 Liter/sec for 10oC rise

Operating Temperature: 0 - 55oC

Operating Humidity: 65% RH, 0 - 40oC

INPUT CHARACTERISTICS

Maximum Voltage: 150 Vdc, 280 Vacrms, 2500 Vpk

Maximum Current: Non-inductive Per Channel: a

a. 8.0 Adc @ 35 Vdc; 3.5 Adc @ 40 Vdc; 1.5 Adc @ 50 Vdc; 0.8 Adc @ 70 Vdc; 0.3 Adc @ 150 Vdc.

12 Adc @ 30 Vdc, or 12 Aacrms

Maximum Power: Per channel:
Per Module:

360 W, or 3360 VA
2160 W, or 20160 VA

DC PERFORMANCE

Initial Closed Channel Resistance: 0.1 Ω (typical)

Isolation resistance:
(between any two points)

≤ (40oC, 65% RH):

≤ (25oC, 40% RH):

> 108 Ω
> 109 Ω

Thermal Offset: Per Channel: < 10 µV

AC PERFORMANCE

Capacitance: Hi to Lo:
Channel to Channel:
Channel to Chassis:

< 200 pF
< 200 pF
< 200 pF

Bandwidth (-3 dB): 10 MHz

Crosstalk:
(Channel to Channel for Zl = Zs = 50Ω)

< 10 KHz:
< 100 KHz:

< -65 dB
< -45 dB

Time to Close or Open a Channel: 15 ms (typical)
E8480A Specifications 85Appendix A

Notes:
86 E8480A Specifications Appendix A

Appendix B

Register-Based Programming

About This Appendix
The Agilent E8480A High Power General Purpose (GP) Switch module is a
register-based product which does not support the VXIbus word serial
protocol. When a SCPI command is sent to the module, the instrument driver
resident in the Agilent E1406A command module parses the command and
programs the module at the register level.

Register-based programming is a series of reads and writes directly to the
module registers. This increases throughput speed since it eliminates
command parsing and allows the use of an embedded controller. Also,
register programming provides an avenue for users to control a VXI module
with an alternate VXI controller device and eliminate the need for using an
E1406A command module.

This appendix contains the information you need for register-based
programming. The contents include:

• Register Addressing . 87
• Registers Description . 91

Register Addressing
Register addresses for register-based devices are located in the upper 25%
of VXI A16 address space. Every VXI device (up to 256 devices) is
allocated a 32 word (64 byte) block of addresses. Figure B-1 on page 88
shows the register address location within A16 as it might be mapped by an
embedded controller. Figure B-2 on page 89 shows the location of A16
address space in the E1406A command module.

When you are reading from or writing to a register of the module, a
hexadecimal or decimal register address needs to be specified. This address
consists of a base address plus a register offset:

Register Address = Base Address + Register Offset

Base Address The base address used in register-based programming depends on whether
the A16 address space is outside or inside the E1406A command module.
Register-Based Programming 87Appendix B

A16 Address Space
Outside the Command

Module

When the E1406A command module is not part of your VXIbus system
(Figure B-1), the module’s base address is computed as:1

C000h + (LADDRh * 40h)

- or (decimal)
49,152 + (LADDR * 64)

where C000h (49,152) is the starting location of the VXI A16 addresses,
LADDR is the module’s logical address, and 64 (40h) is the number of
address bytes per register-based module. For example, the module’s factory
set logical address is 120 (78h). If this address is not changed, the module
will have a base address of:

C000h + (78h * 40h) = C000h + 1E00h = DE00h

- or (decimal)
49,152 + (120 * 64) = 49,152 + 7680 = 56,832

Figure B-1. Registers within A16 Address Space

1. Numbers with a subscripted "h" are in hexadecimal format. Numbers without the subscripted "h" are in
decimal format.

))))
K

5HJLVWHU
$GGUHVV
�6SDFH

�����

&���
K

��������

&���
K

����
K

))))
K

���$��
$GGUHVV
�6SDFH

�%DVH�$GGUHVV� �&��� ����/RJLFDO�$GGUHVV�
����

��RU
������������������������� �����������/RJLFDO�$GGUHVV�
���
�
5HJLVWHU�$GGUHVV� �%DVH�$GGUHVV���5HJLVWHU�2IIVHW

K K

��
K

5HOD\�&RQWURO�5HJLVWHU��

��
K

5HOD\�&RQWURO�5HJLVWHU��

��
K

5HOD\�&RQWURO�5HJLVWHU��

��
K

(PHUJHQF\�&RQWURO�5HJLVWHU

5HJLVWHU
�2IIVHW

'HVFULSWLRQ

��
K

7LPHU�&RQWURO�5HJLVWHU��

��
K

7LPHU�&RQWURO�5HJLVWHU��

��
K

,'�5HJLVWHU

��
K

'HYLFH�7\SH�5HJLVWHU

��
K

6WDWXV�&RQWURO�5HJLVWHU

�&
K

,QWHUUXSW�6HOHFWLRQ�5HJLVWHU
88 Register-Based Programming Appendix B

A16 Address Space
Inside the Command

Module

When the A16 address space is inside the Agilent E1406A command
module (Figure B-2), the module’s base address is computed as:1

1FC000h + (LADDRh * 40h)

- or (decimal)
2,080,768 + (LADDR * 64)

where 1FC000h (2,080,768) is the starting location of the register addresses,
LADDR is the module’s logical address, and 64 (40h) is the number of
address bytes per register-based device. Again, the module’s factory set
logical address is 120 (78h). If this address is not changed, the module will
have a base address of:

1FC000h + (78h * 40h) = 1FC000h + 1E00h = 1FDE00h

- or (decimal)
2,080,768 + (120 * 64) = 2,080,768 + 7680 = 2,088,448

Figure B-2. Registers within Command Module’s A16 Address Space

1. Numbers with a subscripted "h" are in hexadecimal format. Numbers without the subscripted "h" are in
decimal format.

������
K

5HJLVWHU
$GGUHVV
�6SDFH
�����

�)&���
K

���$��
$GGUHVV
�6SDFH

�%DVH�$GGUHVV� ��)&��� ����/RJLFDO�$GGUHVV�
����

��RU
������������������������� ��������������/RJLFDO�$GGUHVV�
���
�
5HJLVWHU�$GGUHVV� �%DVH�$GGUHVV���5HJLVWHU�2IIVHW

K K

(�����
K

������
K

))))))
K

���$��
$GGUHVV
�6SDFH

�)����
K

������
K

�����(����
$GGUHVV�0DS

������
K

�)&���
K

�)����
K

��
K

5HOD\�&RQWURO�5HJLVWHU��

��
K

5HOD\�&RQWURO�5HJLVWHU��

��
K

5HOD\�&RQWURO�5HJLVWHU��

��
K

(PHUJHQF\�&RQWURO�5HJLVWHU

5HJLVWHU
�2IIVHW

'HVFULSWLRQ

��
K

7LPHU�&RQWURO�5HJLVWHU��

��
K

7LPHU�&RQWURO�5HJLVWHU��

��
K

,'�5HJLVWHU

��
K

'HYLFH�7\SH�5HJLVWHU

��
K

6WDWXV�&RQWURO�5HJLVWHU

�&
K

,QWHUUXSW�6HOHFWLRQ�5HJLVWHU
Register-Based Programming 89Appendix B

Register Offset The register offset is the register’s location in the block of 64 address bytes.
For example, the module’s Status/Control Register has an offset of 04h.
When you write a command to this register, the offset is added to the base
address to form the register address:

DE00h + 04h= DE04h

1FDE00h + 04h = 1FDE04h

- or (decimal)

56,832 + 4 = 56,836
2,088,448 + 4 = 2,088,452
90 Register-Based Programming Appendix B

Registers Description
The E8480A module contains 10 registers as shown in Table B-1 on
page 91. You can write to the writable (W) registers and read from the
readable (R) registers. This section contains a description of the registers
followed by a bit map of the registers in sequential address order.

NOTE Undefined register bits (shown as "x" in the Tables) return as "1" when the
register is read, and have no effect when written to.

Table B-1. Module Registers

Registers Addr. Offset R/W Register Address

Manufacturer ID Register 00h R base + 00h

Device Type Register 02h R base + 02h

Status/Control Register 04h R/W base + 04h

Interrupt Selection Register 0Ch R/W base + 0Ch

Relay Control Register 1 (for Channels 00-15) 10h R/W base + 10h

Relay Control Register 2 (for Channels 16-31) 12h R/W base + 12h

Relay Control Register 3 (for Channels 32-39) 14h R/W base + 14h

Timer Control Register 1 20h R/W base + 20h

Timer Control Register 2 22h R/W base + 22h

Emergency Control Register 24h R/W base + 24h
Register-Based Programming 91Appendix B

ID Register The Manufacturer Identification Register is at offset address 00h. Reading
the register returns FFFFh indicating the manufacturer is Agilent
Technologies and the module is an A16 register-based device.

Device Type
Register

The Device Type Register is at offset address 02h. Reading the register
returns 02D0h indicating that the device is an E8480A module.

Status/Control
Register

The Status/Control Register is at offset address 04h. It is used to control the
module and inform the user of its status.

Reading the
Status/Control Register

When reading the status/control register, the following bits are of
importance:

• Self-test Passed (bit 2) - Used to inform the user of the self-test status.
"1" in this field indicates the module has successfully passed its
self-test, and "0" indicates that the module is either executing or has
failed its self-test.

• Interrupt Status (bit 6) - Used to inform the user of the interrupt
status. "0" indicates that the interrupt is enabled, and "1" indicates that
the interrupt is disabled. The interrupt generated after a channel has
been closed can be disabled.

• Busy (bit 7) - Used to inform the user of a busy condition. "0"
indicates that the module is busy, and "1" indicates that the module is
not busy. Each relay requires about 20 ms execution time during which
time the module is busy.

base + 00h 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Write x

Read Manufacturer ID - returns FFFFh in Agilent Technologies A16 only register-based card

base + 02h 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Write x

Read 02D0h

base + 04h 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Write a x IRQ E/D x S R

Read b x MS x B IRQ E/D x 1 P x

a. Writing to the reserved bits ("x") will cause no action. We recommend writing "1" to these bits.
b. Reading from the reserved bits ("x") will return as "1". Do not rely on these value for card operation.
92 Register-Based Programming Appendix B

• Modid Select (bit 14) - "0" in this bit indicates that the module is
selected by a high state on the P2 MODID line, and "1" indicates it is
not selected via the P2 MODID line.

As an example, if a read of the Status Register (base + 04h) returns "FFBF
(1111111110111111)", it indicates that the module is not busy (bit 7 = 1)
and the interrupt is enabled (bit 6 = 0).

Writing to the
Status/Control Register

When writing to the status/control register, the following bits are of
importance:

• Soft Reset (bit 0) - Writing a "1" to this bit will force the module to
reset (all channels open).

NOTE When writing to the registers it is necessary to write "0" to bit 0 after the
reset has been performed before any other commands can be programmed
and executed. SCPI commands take care of this automatically.

• Sysfail Inhibit (bit 1) - Writing a "1" to this bit will disable the
module from driving the SYSFAIL line (all channels open). The Slot-0
module can detect the failed module via this line.

• Interrupt Enable/Disable (bit 6) - Writing a "1" to this bit will
disable the module from sending an interrupt request (generated by
operating relays). Writing a "0" to this bit will enable the module’s
interrupt capability.

NOTE Typically, interrupts are only disabled to "peek-poke" a module. Refer to
your command module’s operating manual before disabling the interrupt.

Interrupt Selection
Register

The Interrupt Selection Register is at offset address 0Ch. It is used to set the
interrupt level of the module and inform the user of the current interrupt
level of the module.

• You can set the interrupt level of the module by writing to Interrupt
Level Bits (bits 0-2) of the register. Writing bits 2-0 with 001, 010,
011, 100, 101, 110, or 111 will set the interrupt level to 1 through 7
which corresponds to the VXI backplane lines 1-7. The highest
interrupt level is 7, and the lowest level is 1 (default value).

base + 0Ch 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Write x Interrupt Level

Read x Interrupt Level
Register-Based Programming 93Appendix B

• Reading the register will return the current interrupt level of the
module. The returned value 001, 010, 011, 100, 101, 110, or 111 in
Bits 2-0 corresponds to interrupt level 1 through 7.

Relay Control
Registers

There are three relay control registers used to control the 40 channel relays
of the module. All these registers are readable/writable (R/W) registers.

-- Relay Control Register 1 for Channel 00-15
-- Relay Control Register 2 for Channel 16-31
-- Relay Control Register 3 for Channel 32-39

The numbers shown in the above register maps indicate the channel numbers
of the module.

• Writing a "1" to one bit will close related channel, and writing a "0"
will open the channel. For example, to close channel 02, you need to
write a "1" to bit 2 of the Relay Control Register (base +10h) to close
channel 02 and all other bits are set to "0".

• Reading the channel bit indicates to get the state of the relay driver
circuit only. It cannot detect a defective relay. A bit that is "1"
represents the related channel relay is closed. A bit that is "0" indicates
the related channel relay is open.

• When the module is powered on or reset, all the channel relays are
open and when you read from these registers, all the bits are zero.

Relay Control Register for Channels 00 - 15 (base + 10h)

base + 10h 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Write ch
15

ch
14

ch
13

ch
12

ch
11

ch
10

ch
09

ch
08

ch
07

ch
06

ch
05

ch
04

ch
03

ch
02

ch
01

ch
00Read

Relay Control Register for Channels 16 - 31 (base + 12h)

base + 12h 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Write ch
31

ch
30

ch
29

ch
28

ch
27

ch
26

ch
25

ch
24

ch
23

ch
22

ch
21

ch
20

ch
19

ch
18

ch
17

ch
16Read

Relay Control Register for Channels 32 - 39 (base + 14h)

base + 14h 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Write
x

ch
39

ch
38

ch
37

ch
36

ch
35

ch
34

ch
33

ch
32Read
94 Register-Based Programming Appendix B

Timer Control
Registers

Each relay on the E8480A module requires about 15 ms settling time during
which time the module is busy. There are two registers used to provide a
programmable timer for the relay settling time. They are:

-- Timer Control Register 1 (base + 20h)

-- Timer Control Register 2 (base + 22h)

As shown in above table, totally 24-bits of the two Timer Control Registers
can be used to preset the relay settling time. Since the system clock is 16
MHz, each step of the timer is 62.5 nanoseconds. The maximum
programmable timer can be set to:

62.5 ns * FFFFFFh = 1.0486 second

The settling time is calculated based on the following formula:

Settling Time = 62.5 ns * (FFFFFFh - xxyyyyh)

where yyyyh is the value written to the Timer Control Register 1 and xxh to
the Timer Control Register 2.

For example, if you want to preset the relay settling time to 15 ms, you
should write "567Fh" to Timer Control Register 1 (base + 20) and "FCh" to
Timer Control Register 2 (base + 22). Since:

xxyyyyh = FFFFFFh - (15 ms / 62.5 ns)h = FC567Fh

These two registers can also be read back. The returned value can be used to
calculate the settling time set for the relays.

NOTE For register-based programming, you must set the relay settling time each
time the module is powered up. We highly recommend you set the time to
15 ms for the E8480A relays.

Timer Control Register 1 (base + 20h)

base + 20h 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Write Set Time

Read Read Time

Timer Control Register 2 (base + 22h)

base + 22h 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Write x Set Time

Read Read Time
Register-Based Programming 95Appendix B

Emergency Control
Register

The Emergency Control Register is at offset address 24h. It is used to enable
or disable the "Emergency Reset" port on the module’s front panel to accept
external emergency trigger signal. This register can also be read back.

Writing to the
Emergency Control

Register

When writing to the Emergency Control register, only bit 0 of the register is
of use:

• Writing a "1" to bit 0 will disable the "Emergency Reset" port on the
front panel of the module. By default, it is disabled (bit 0 = 1).

• Writing a "0" to this bit will enable the "Emergency Reset" port on the
front panel of the module. When enabled, the "Emergency Reset" port
can accept a TTL low voltage or a +5V negative-going pulse to force
the module to open all channel relays. Furthermore, all relays on the
module can not be operated any more unless the current emergency
state is cleared.

• Once the emergency occurs, you need to clear the emergency state to
recover the operation on the module relays. This can be done by
writing a "1", then a "0" to this bit.

Reading the Emergency
Control Register

When reading the Emergency Control register, the following bits are of use:

• Bit 0 (E/D) - Used to inform the user of the state of the "Emergency
Reset" port whether enabled or disabled. "1" in this field indicates the
port is disabled, and "0" indicates the port is enabled.

• Bit 6 (Emer.) - Used to inform the user of the emergency status on the
"Emergency Reset" port whether happened or not. "1" indicates an
emergency happened, and "0" indicates no emergency happened.

base + 24h 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Write x E/D

Read x Emer. x E/D
96 Register-Based Programming Appendix B

Appendix C

Error Messages

Table C-1 lists the error messages associated with the E8480A High Power
General Purpose Switch Module when programmed with SCPI commands.
See the appropriate mainframe manual for a complete list of error messages.

Table C-1. Error Messages

Number Error Message Potential Cause(s)

-211 Trigger ignored Trigger received when scan not enabled. Trigger received after
scan complete. Trigger too fast.

-213 INIT Ignored Attempting to execute an INIT command when a scan is
already in progress.

-224 Illegal parameter value Attempting to execute a command with a parameter not
applicable to the command.

-240 Hardware error Command failed due to a hardware problem.

-310 System error Too many characters in the channel list expression.

1500 External trigger source
already allocated

Assigning an external trigger source to a switchbox when the
trigger source has already been assigned to another switchbox.

2000 Invalid card number Addressing a module (card) in a switchbox that is not part of the
switchbox.

2001 Invalid channel number Attempting to address a channel of a module in a switchbox that
is not supported by the module (e.g., channel 99 of a module).

2006 Command not supported
on this card

Sending a command to a module (card) in a switchbox that is
unsupported by the module.

2008 Scan list not initialized Executing an INIT command without a channel list defined.

2009 Too many channels in
channel list

Attempting to address more channels than available in the
switchbox.

2011 Empty channel list Channel lists contains no valid channels.

2012 Invalid Channel Range Invalid channel(s) specified in SCAN <channel_list> command.
Attempting to begin scanning when no valid channel list is
defined.

2600 Function not supported
on this card

Sending a command to a module (card) in a switchbox that is
not supported by the module or switchbox.

2601 Missing parameter Sending a command requiring a channel_list without the
channel_list.
Error Messages 97Appendix C

Notes:
98 Error Messages Appendix C

Appendix D

Relay Life

Relay Life Electromechanical relays are subject to normal wear-out. Relay life depends
on several factors. The effects of loading and switching frequency are briefly
discussed below:

Relay Load. In general, higher power switching reduces relay life. In
addition, capacitive/inductive loads and high inrush currents (for example,
turning on a lamp or starting a motor) reduces relay life. Exceeding specified
maximum inputs can cause catastrophic failure.

Switching Frequency. Relay contacts heat up when switched. As the
switching frequency increases, the contacts have less time to dissipate heat.
The resulting increase in contact temperature also reduces relay life.

End-of-Life
Detection

A preventive maintenance routine can prevent problems caused by
unexpected relay failure. The end of the life of the relay can be determined
by using one or more of the three methods described below. The best method
(or combination of methods), as well as the failure criteria, depends on the
application in which the relay is used.

Contact Resistance. As the relay begins to wear out, its contact resistance
increases. When the resistance exceeds a predetermined value, the relay
should be replaced.

Stability of Contact Resistance. The stability of the contact resistance
decreases with age. Using this method, the contact resistance is measured
several (5-10) times, and the variance of the measurements is determined.
An increase in the variance indicates deteriorating performance.

Number of Operations. Relays can be replaced after a predetermined
number of contact closures. However, this method requires knowledge of
the applied load and life specifications for the applied load.
Relay Life 99Appendix D

Notes:
100 Relay Life Appendix D

Index
A
A16 Address Space, 87– 89

inside command module, 89
outside command module, 88

Abbreviated SCPI Commands, 50
ABORt Command, 52
Accessories available, 21
Address

A16 address space, 87
base address, 87
channel address, 13
logical, 18, 88, 89
register address, 87
secondary, 13, 27

ARM subsystem, 53– 54
ARM:COUNt, 53
ARM:COUNt?, 54

B
Base Address, 87
Boolean Command Parameter, 50

C
C language example programs

closing a single channel, 15
closing multiple channels, 32
identifying the module, 29
scanning channels using Trig In/Out ports, 35
scanning channels with TTL trigger, 40
using scan complete bit, 44

Card Number, 14
Channel

addresses, 13
Numbers, 14

closing channels, 15, 31
Command Format

common, 49
SCPI, 49

Command Module
A16 address space inside the, 89
A16 address space outside the, 88
programming with, 27
scanning channels with, 33

Command Reference
IEEE 488.2 Common, 84
SCPI, 51– 83

Commands
[ROUTt:] subsystem, 69– 72
abbreviated, 50
ABORt, 52
ARM subsystem, 53– 54
DIAGnostic subsystem, 55– 60
DISPlay subsystem, 61– 62
IEEE 488.2 common, 84
implied, 50
INITiate subsystem, 63– 64
linking Common Commands with SCPI, 51
linking multiple SCPI commands, 51
OUTPut subsystem, 65– 68
parameter types, 50
separator, 49
STATus subsystem, 73– 76
SYSTem subsystem, 77– 79
TRIGger subsystem, 80– 82
types of, 49
Variable, 50

Common Commands
*CLS, 84
*ESE, 84
*ESE?, 84
*ESR?, 84
*IDN?, 84
*OPC, 84
*OPC?, 84
*RCL, 84
*RST, 84
*SAV, 84
*SRE, 84
*SRE?, 84
*STB, 84
*TRG, 84
*TST?, 84
*WAI, 84
format, 49
Quick Reference, 84

Configuration
emergency reset, 24
interrupt priority, 19
logical address, 18

Connecting
User Inputs, 20
User-supplied connectors to the module, 22
Agilent E8480A User’s Manual Index 101

C (continued)
Connectors

location, 20
Option 105, 21
Option 106, 21
order information, 21
Pinout diagram, 20

D
declaration of conformity, 9
Descriptions

general information, 11
registers, 91

Detecting Error Conditions, 47
Device Type Register, 92
DIAGnostic subsystem, 55– 60
DIAGnostic:EMERgency:CLEar, 55
DIAGnostic:EMERgency:STATus?, 56
DIAGnostic:EMERgency:TRIGger:STATe, 56
DIAGnostic:EMERgency:TRIGger:STATe?, 57
DIAGnostic:INTerrupt:TIMer, 58
DIAGnostic:INTerrupt:TIMer?, 59
DIAGnostic:INTerrupt[:LINe], 57
DIAGnostic:INTerrupt[:LINe]?, 58
DIAGnostic:SCAN:DELay, 59
DIAGnostic:SCAN:DELay?, 59
DIAGnostic:TEST:SEEProm?, 60
DIAGnostic:TEST[:RELay]?, 60
Disable

continuous scanning, 63
ECL Trigger Bus Line, 65
emergency reset, 56, 96
interrupts, 57, 93
Trig Out port, 66
TTL Trigger Bus Line, 67

Discrete Command Parameter, 50
DISPlay subsystem, 61– 62
DISPlay:MONitor:CARD, 61
DISPlay:MONitor:CARD?, 61
DISPlay:MONitor[:STATe], 62
DISPlay:MONitor[:STATe]?, 62
documentation history, 8

E
ECL Trigger

query state of, 66
setting, 65

Emergency Reset
clearing, 24, 55, 96
description, 11, 24
enable/disable setting, 24, 56, 96
port enable/disable quering, 57, 96
port location, 12, 24
status quering, 56, 96

Enable
continuous scanning, 63
emergency reset, 56, 96
interrupts, 57, 93
Trig Out port, 66
TTL Trigger Bus Line, 67

Error
example program, 47
message, list of, 97
number, list of, 97
querying, 47, 79
Types, 97

Event Register, 76
Examples

Closing a Single Channel, 15
Closing Multiple Channels, 31
Identifying Module, 29
Querying Errors, 47
Saving and Recalling Instrument State, 46
Scanning Channels Using Trig In/Out Ports, 33
Scanning Channels Using TTL Trigger, 38
Synchronizing the Instruments, 48
Using the Scan Complete Bit, 43

External Trig In/Out, 33, 81

F
Field Wiring, 20
Format

common command, 49
SCPI command, 49

Front Panel
Emergency Reset port, 12, 24
figure, 12, 20

Front Panel connectors pinout, 20

G
Group Execute Trigger (GET), 81
102 Agilent E8480A User’s Manual Index

H
HTBasic language example programs

closing a single channel, 15
closing multiple channels, 32
identifying the module, 29
querying system errors, 47
saving and recalling instrument state, 46
scanning channels using Trig In/Out ports, 34
scanning channels with TTL trigger, 39
synchronizing instruments, 48
using scan complete bit, 43

I
ID Register, 92
IEEE 488.2 Common Command Reference, 84
Implied Commands, 50
Initial Operation, 15
INITiate subsystem, 63– 64
INITiate:CONTinuous, 63
INITiate:CONTinuous?, 64
INITiate[:IMMediate], 64
Instrument Definition, 13
Instruments, synchronizing, 48
interface address, 12
Interrupt

disabling, 57, 93
enabling, 57, 93
priority level, 93

Interrupt Selectionl Register, 93

L
LADDR, 88, 89
Linking Commands, 51
Logical Address

factory setting, 18, 88, 89
register-based, 88, 89
setting, 18, 88, 89
switch location, 18

M
Module

Card Number, 14
channel addresses, 13
Channel Numbers, 14
Connectinf field wiring, 20
connectors pinout, 20
description, 11
emergency reset, 24

Module (Continued)
example programs, 27
front panel figure, 12, 20
interrupt priority, 19
logical address, 18, 88, 89
programming with, 13
Reset Conditions, 28
simplified schematic, 12
Specifications, 85

Multiple-module Switchbox, 14

N
Non-continuous Scanning, 63
Numeric Command Parameter, 50

O
Offset, register, 90
opening channels, 15, 31
Operation Status Register, 73

Scan Complete Bit, 73
Option 105, 21
Option 106, 21
Optional Parameters, 51
OUTPut subsystem, 65– 68
OUTPut:ECLTrgn[:STATe], 65
OUTPut:ECLTrgn[:STATe]?, 66
OUTPut:TTLTrgn[:STATe], 67
OUTPut:TTLTrgn[:STATe]?, 68
OUTPut[:EXTernal][:STATe], 66
OUTPut[:EXTernal][:STATe]?, 67

P
Parameters

boolean, 50
discrete, 50
numeric, 50
optional, 51
types of (SCPI), 50

Programming
examples, 27
Register-based, 87
with SCPI commands, 13

Protecting Relays and Circuits, 23
Adding Varistors, 23
Allowable Switch Current, 25
Emergency Reset, 24
Relay end-of-life detection, 99
Agilent E8480A User’s Manual Index 103

Q
Quick Reference

Common Command, 84
SCPI Command, 83

R
Readable Registers, 91
Reading

Device Type Register, 92
Emergency Control Register, 96
ID Register, 92
Interrupt Selection Register, 94
Relay Control Registers, 94
Status/Control Register, 92
Timer Control Registers, 95

Recalling and Saving States, 46
Register-based Programming, 87
Registers

addressing, 87
base address, 87
description, 91
Device Type, 92
ID, 92
Interrupt Selection, 93
offset, 90
Relay Control, 94
Status/Control, 92
Timer Control, 95

Relay Control Registers, 94
Relays

end of the life detection, 99
Reset Conditions, 28
restricted rights statement, 7
[ROUTe:]CLOSe, 69
[ROUTe:]CLOSe?, 70
[ROUTe:]OPEN, 70
[ROUTe:]OPEN?, 71
[ROUTe:]SCAN, 71
[ROUTt:] subsystem, 69– 72

S
safety symbols, 8
Scan Complete Bit, 73
Scanning Channels, 33

Using Trig In/Out Ports, 33
Using TTL Trigger, 38

SCPI Command Format, 49
SCPI Command Quick Reference, 83

SCPI Command Reference, 51– 82
[ROUTe:] subsystem, 69– 72
[ROUTe:]CLOSe, 69
[ROUTe:]CLOSe?, 70
[ROUTe:]OPEN, 70
[ROUTe:]OPEN?, 71
[ROUTe:]SCAN, 71
ABORt, 52
ARM subsystem, 53– 54
ARM:COUNt, 53
ARM:COUNt?, 54
DIAGnostic:EMERgency:CLEar, 55
DIAGnostic:EMERgency:STATus?, 56
DIAGnostic:EMERgency:TRIGger:STATe, 56
DIAGnostic:EMERgency:TRIGger:STATe?, 57
DIAGnostic:INTerrupt:TIMer, 58
DIAGnostic:INTerrupt:TIMer?, 59
DIAGnostic:INTerrupt[:LINe], 57
DIAGnostic:INTerrupt[:LINe]?, 58
DIAGnostic:SCAN:DELay, 59
DIAGnostic:SCAN:DELay?, 59
DIAGnostic:TEST:SEEProm?, 60
DIAGnostic:TEST[:RELays]?, 60
DIAGnostics subsystem, 55– 60
DISPlay subsystem, 61– 62
DISPlay:MONitor:CARD, 61
DISPlay:MONitor:CARD?, 61
DISPlay:MONitor[:STATe], 62
DISPlay:MONitor[:STATe]?, 62
INITiate subsystem, 63– 64
INITiate:CONTinuous, 63
INITiate:CONTinuous?, 64
INITiate[:IMMediate], 64
OUTPut subsystem, 65– 68
OUTPut:ECLTrgn[:STATe], 65
OUTPut:ECLTrgn[:STATe]?, 66
OUTPut:TTLTrgn[:STATe], 67
OUTPut:TTLTrgn[:STATe]?, 68
OUTPut[:EXTernal][:STATe], 66
OUTPut[:EXTernal][:STATe]?, 67
STATus subsystem, 73– 76
STATus:OPERation:CONDition?, 75
STATus:OPERation:ENABle, 75
STATus:OPERation:ENABle?, 75
STATus:OPERation[:EVENt]?, 76
STATus:PRESet, 76
SYSTem subsystem, 77– 79
SYSTem:CDEScription?, 77
SYSTem:CPON, 78
SYSTem:CTYPe?, 78
104 Agilent E8480A User’s Manual Index

S (continued)
SCPI Command Reference (continued)

SYSTem:ERRor?, 79
SYSTem:VERSion?, 79
TRIGger subsystem, 80– 82
TRIGger:SOURce, 81
TRIGger:SOURce?, 82
TRIGger[:IMMediate], 80

secondary address, 27
Separator, command, 49
Setting the Interrupt Priority, 19
Setting the Logical Address, 18
Single-module Switchbox, 14
Specifications, 85
STATus subsystem, 73– 76
Status System Register

Block Diagram, 74
Operation Status Register, 73
Standard Event Status Register, 73
Status Byte Register, 73

Status/Control Register, 92
STATus:OPERation:CONDition?, 75
STATus:OPERation:ENABle, 75
STATus:OPERation:ENABle?, 75
STATus:OPERation[:EVENt]?, 76
STATus:PRESet, 76
Subsystems (SCPI Commands)

[ROUTe:], 69– 72
ABORt, 52
ARM, 53– 54
DIAGnostic, 55– 60
DISPlay, 61– 62
INITiate, 63– 64
OUTPut, 65– 68
STATus, 73– 76
SYSTem, 77– 79
TRIGger, 80– 82

Switchbox
multiple-module, 14
single-module, 14

switching channels, 15, 31
Synchronizing the Instruments, 48
SYSTem subsystem, 77– 79
SYSTem:CDEScription?, 77
SYSTem:CPON, 78
SYSTem:CTYPe?, 78
SYSTem:ERRor?, 79
SYSTem:VERSion?, 79

T
Timer Control Registers, 95
trigger sources, 81
TRIGger subsystem, 80– 82
TRIGger:SOURce, 81
TRIGger:SOURce?, 82
TRIGger[:IMMediate], 80
TTL Trigger

query state of, 68
setting, 67

Types
command parametes, 50
commands, 49
error, 97

V
Variable Commands, 50
Varistors, 23

W
WARNINGS, 8
warranty statement, 7
Wiring information, 20
writable registers, 91
Writing to

Emergency Control Register, 96
Interrupt Selection Register, 93
Relay Control Registers, 94
Status/Control Register, 93
Timer Control Registers, 95
Agilent E8480A User’s Manual Index 105

Notes:
106 Agilent E8480A User’s Manual Index

E8480-90001
 Manual Part Number: E8480-90001
 Printed in U.S.A. E0301

	Table of Contents
	AGILENT TECHNOLOGIES WARRANTY STATEMENT
	Safety Symbols
	WARNINGS
	Declaration of Conformity
	Chapter 1 Getting Started
	About This Chapter
	Agilent E8480A Module Description
	Basic Operation
	Typical Configuration

	Instrument Definition
	Programming the Module
	Specifying SCPI Commands
	Channel Addresses
	Channel Number
	Card Number

	Initial Operation
	Example: Closing a Channel (HTBasic)
	Example: Closing a Channel (C/C++)

	Chapter 2 Configuring the Module
	About This Chapter
	Warnings and Cautions
	Setting the Logical Address
	Setting the Interrupt Priority
	Connecting Field Wiring to the Module
	Front Panel & Connectors Pinout
	Accessories for Wiring
	Attaching Connectors to the Module

	Protecting Relays and Circuits
	Adding Varistors
	Emergency Reset
	Maximum Allowable Module Switch Current

	Chapter 3 Using the Module
	About This Chapter
	Module Commands Summary
	Power-On and Reset Conditions
	Module Identification
	Example: Identifying Module (HTBasic)
	Example: Identifying Module (C/C++)

	Switching Channels
	Example: Closing Multiple Channels (HTBasic)
	Example: Closing Multiple Channels (C/C++)

	Scanning Channels
	Example: Scanning Channels Using Trig In/Out Ports
	Programming with HTBasic
	Programming with C/C++

	Example: Scanning Channels Using TTL Trigger
	Programming with HTBasic
	Programming with C/C++

	Using the Scan Complete Bit
	Recalling and Saving States
	Example: Saving and Recalling Instrument State (HTBasic)

	Querying the Module
	Detecting Error Conditions
	Example: Querying Errors (HTBasic)

	Synchronizing the Instruments
	Example: Synchronizing the Instruments (HTBasic)

	Chapter 4 Command Reference
	About This Chapter
	Command Types
	Common Command Format
	SCPI Command Format
	Command Separator
	Abbreviated Commands
	Implied Commands
	Variable Commands
	Parameters

	Linking Commands

	SCPI Command Reference
	ABORt
	Subsystem Syntax
	Comments
	Example

	ARM
	Subsystem Syntax
	ARM:COUNt
	Parameters
	Comments
	Example

	ARM:COUNt?
	Parameters
	Comments
	Example

	DIAGnostic
	Subsystem Syntax
	DIAGnostic:EMERgency:CLEar
	Parameters
	Comments
	Example

	DIAGnostic:EMERgency:STATus?
	Parameters
	Comments
	Example

	DIAGnostic:EMERgency:TRIGger:STATe
	Parameters
	Comments
	Example

	DIAGnostic:EMERgency:TRIGger:STATe?
	Parameters
	Comments
	Example

	DIAGnostic:INTerrupt[:LINe]
	Parameters
	Comments
	Example

	DIAGnostic:INTerrupt[:LINe]?
	Parameters
	Comments
	Example

	DIAGnostic:INTerrupt:TIMer
	Parameters
	Comments
	Example

	DIAGnostic:INTerrupt:TIMer?
	Example

	DIAGnostic:SCAN:DELay
	Parameters
	Example

	DIAGnostic:SCAN:DELay?
	Example

	DIAGnostic:TEST[:RELays]?
	Comments
	Example

	DIAGnostic:TEST:SEEProm?
	Parameters
	Comments
	Example

	DISPlay
	Subsystem Syntax
	DISPlay:MONitor:CARD
	Parameters
	Comments
	Example

	DISPlay:MONitor:CARD?
	DISPlay:MONitor[:STATe]
	Parameters
	Comments
	Example

	DISPlay:MONitor[:STATe]?

	INITiate
	Subsystem Syntax
	INITiate:CONTinuous
	Parameters
	Comments
	Example

	INITiate:CONTinuous?
	Example

	INITiate[:IMMediate]
	Comments
	Example

	OUTPut
	Subsystem Syntax
	OUTPut:ECLTrgn[:STATe]
	Parameters
	Comments
	Example

	OUTPut:ECLTrgn[:STATe]?
	Example

	OUTPut[:EXTernal][:STATe]
	Parameters
	Comments
	Example

	OUTPut[:EXTernal][:STATe]?
	Example

	OUTPut:TTLTrgn[:STATe]
	Parameters
	Comments
	Example

	OUTPut:TTLTrgn[:STATe]?
	Example

	[ROUTe:]
	Subsystem Syntax
	[ROUTe:]CLOSe
	Parameters
	Comments
	Example

	[ROUTe:]CLOSe?
	Comments
	Example

	[ROUTe:]OPEN
	Parameters
	Comments
	Example

	[ROUTe:]OPEN?
	Comments
	Example

	[ROUTe:]SCAN
	Parameters
	Comments
	Example

	STATus
	Subsystem Syntax
	STATus:OPERation:CONDition?
	STATus:OPERation:ENABle
	Parameters
	Comments
	Example

	STATus:OPERation:ENABle?
	Comments
	Example

	STATus:OPERation[:EVENt]?
	Comments
	Example

	STATus:PRESet

	SYSTem
	Subsystem Syntax
	SYSTem:CDEScription?
	Parameters
	Comments
	Example

	SYSTem:CPON
	Parameters
	Comments
	Example

	SYSTem:CTYPe?
	Parameters
	Comments
	Example

	SYSTem:ERRor?
	Comments
	Example

	SYSTem:VERSion?
	Comments
	Example

	TRIGger
	Subsystem Syntax
	TRIGger[:IMMediate]
	Comments
	Example

	TRIGger:SOURce
	Parameters
	Comments
	Example
	Example

	TRIGger:SOURce?
	Example

	SCPI Command Quick Reference
	IEEE 488.2 Common Command Reference

	Appendix A E8480A Specifications
	Appendix B Register-Based Programming
	About This Appendix
	Register Addressing
	Base Address
	A16 Address Space Outside the Command Module
	A16 Address Space Inside the Command Module

	Register Offset

	Registers Description
	ID Register
	Device Type Register
	Status/Control Register
	Reading the Status/Control Register
	Writing to the Status/Control Register

	Interrupt Selection Register
	Relay Control Registers
	Timer Control Registers
	Emergency Control Register
	Writing to the Emergency Control Register
	Reading the Emergency Control Register

	Appendix C Error Messages
	Appendix D Relay Life
	Relay Life
	End-of-Life Detection

	Index

